result / README.md
andrianangg's picture
komodo-ner
0f6a03d verified
metadata
library_name: peft
license: llama2
base_model: Yellow-AI-NLP/komodo-7b-base
tags:
  - trl
  - sft
  - generated_from_trainer
datasets:
  - id_nergrit_corpus
model-index:
  - name: result
    results: []

result

This model is a fine-tuned version of Yellow-AI-NLP/komodo-7b-base on the id_nergrit_corpus dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.0598
  • eval_runtime: 429.4851
  • eval_samples_per_second: 1.469
  • eval_steps_per_second: 0.368
  • epoch: 0.8265
  • step: 162

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • _load_in_8bit: False
  • _load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16
  • bnb_4bit_quant_storage: uint8
  • load_in_4bit: True
  • load_in_8bit: False

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Framework versions

  • PEFT 0.4.0
  • Transformers 4.44.1
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1