Edit model card

bert-base-uncased-finetuned-autext23

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7841
  • Accuracy: 0.8924
  • F1: 0.8916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 1481 0.3827 0.8562 0.8539
0.2087 2.0 2962 0.4941 0.8861 0.8850
0.2087 3.0 4443 0.6297 0.8894 0.8885
0.0383 4.0 5924 0.8646 0.8669 0.8650
0.0383 5.0 7405 0.7841 0.8924 0.8916

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
574
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for andricValdez/bert-base-uncased-finetuned-autext23

Finetuned
(2064)
this model