whisper-small-id / README.md
anggiatm's picture
End of training
70c89e4 verified
metadata
library_name: transformers
language:
  - id
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small Indonesian - anggiatm
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: id
          split: train+validation+test+validated
          args: 'config: id, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 6.596506595218467

Whisper Small Indonesian - anggiatm

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0931
  • Wer: 6.5965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2099 0.6002 1000 0.1998 14.0573
0.0732 1.2005 2000 0.1336 9.9572
0.0507 1.8007 3000 0.1034 7.5678
0.0197 2.4010 4000 0.0931 6.5965

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1