whisper_small_vi / README.md
anhphuong's picture
End of training
2e4a407 verified
metadata
language:
  - vi
base_model: openai/whisper-small-vi-v2
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Vi - Anh Phuong
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google fleurs
          type: google/fleurs
          config: vi_vn
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 14.430800123571208

Whisper Small Vi - Anh Phuong

This model is a fine-tuned version of openai/whisper-small-vi-v2 on the Google fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4633
  • Wer: 14.4308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0133 4.7619 1000 0.3913 15.3383
0.0009 9.5238 2000 0.4180 14.3227
0.0006 14.2857 3000 0.4382 14.6162
0.0003 19.0476 4000 0.4496 14.4269
0.0002 23.8095 5000 0.4594 14.4578
0.0002 28.5714 6000 0.4633 14.4308

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1