Edit model card

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("anikulkar/bge-base-financial-matryoshka-nvda")
# Run inference
sentences = [
    'Equity Compensation Plan Information Information regarding our equity compensation plans required by this item will be contained in our 2023 Proxy Statement under the caption "Equity Compensation Plan Information," and is hereby incorporated by reference.',
    "What document contains details about NVIDIA's equity compensation plans?",
    'What is the total amount authorized for the repurchase of common stock up to December 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6
cosine_accuracy@3 0.8
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.6
cosine_precision@3 0.2667
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.6
cosine_recall@3 0.8
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.8123
cosine_mrr@10 0.75
cosine_map@100 0.75

Information Retrieval

Metric Value
cosine_accuracy@1 0.7
cosine_accuracy@3 0.8
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.7
cosine_precision@3 0.2667
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.7
cosine_recall@3 0.8
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.8492
cosine_mrr@10 0.8
cosine_map@100 0.8

Information Retrieval

Metric Value
cosine_accuracy@1 0.6
cosine_accuracy@3 0.8
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.6
cosine_precision@3 0.2667
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.6
cosine_recall@3 0.8
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.8123
cosine_mrr@10 0.75
cosine_map@100 0.75

Information Retrieval

Metric Value
cosine_accuracy@1 0.7
cosine_accuracy@3 0.8
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.7
cosine_precision@3 0.2667
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.7
cosine_recall@3 0.8
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.8492
cosine_mrr@10 0.8
cosine_map@100 0.8

Information Retrieval

Metric Value
cosine_accuracy@1 0.5
cosine_accuracy@3 0.6
cosine_accuracy@5 0.9
cosine_accuracy@10 0.9
cosine_precision@1 0.5
cosine_precision@3 0.2
cosine_precision@5 0.18
cosine_precision@10 0.09
cosine_recall@1 0.5
cosine_recall@3 0.6
cosine_recall@5 0.9
cosine_recall@10 0.9
cosine_ndcg@10 0.6879
cosine_mrr@10 0.62
cosine_map@100 0.6283

Training Details

Training Dataset

Unnamed Dataset

  • Size: 90 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 22 tokens
    • mean: 56.66 tokens
    • max: 142 tokens
    • min: 11 tokens
    • mean: 19.33 tokens
    • max: 32 tokens
  • Samples:
    positive anchor
    We also offer the NVIDIA GPU Cloud registry, or NGC, a comprehensive catalog of easy-to-use, optimized software stacks across a range of domains including scientific computing, deep learning, and machine learning. With NGC, AI developers, researchers and data scientists can get started with the development of AI and HPC applications and deploy them on DGX systems, NVIDIA-Certified systems from our partners, or with NVIDIA’s cloud partners. What does the NVIDIA GPU Cloud registry offer?
    To the extent realization of the deferred tax assets becomes more-likely-than-not, we would recognize such deferred tax assets as income tax benefits during the period. What will be recognized as income tax benefits if the realization of deferred tax assets becomes more-likely-than-not?
    Fueled by the sustained demand for exceptional 3D graphics and the scale of the gaming market, NVIDIA has leveraged its GPU architecture to create platforms for scientific computing, AI, data science, AV, robotics, metaverse and 3D internet applications. How did NVIDIA pivot its GPU architecture usage beyond PC graphics?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
1.0 1 0.6952 0.6617 0.725 0.5966 0.7167
2.0 2 0.7060 0.75 0.8 0.6086 0.8
3.0 3 0.72 0.75 0.8 0.6277 0.75
4.0 4 0.8 0.75 0.8 0.6283 0.75
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for anikulkar/bge-base-financial-matryoshka-nvda

Finetuned
(253)
this model

Evaluation results