Edit model card

codellama-code-completion-mojo

This model is a fine-tuned version of meta-llama/CodeLlama-7b-Python-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.77 1.0 50 1.2786
1.0433 2.0 100 1.0009
0.6979 3.0 150 0.9540
0.5164 4.0 200 1.0127

Framework versions

  • PEFT 0.11.2.dev0
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for annaluiza/codellama-code-completion-mojo

Adapter
(1)
this model