metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetune_output
results: []
datasets:
- surrey-nlp/PLOD-CW
language:
- en
library_name: transformers
finetune_output
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1540
- Precision: 0.9636
- Recall: 0.9510
- F1: 0.9573
- Accuracy: 0.952
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3726 | 0.75 | 100 | 0.1531 | 0.9551 | 0.9467 | 0.9509 | 0.946 |
0.1662 | 1.49 | 200 | 0.1540 | 0.9636 | 0.9510 | 0.9573 | 0.952 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.2