Model Card for Model ID
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
Example1:
[Enter some positive ideas]
Input:
坚决清除低俗庸俗媚俗之风
Output:
阻止庸俗的东西侵蚀人们的精神世界,关键还是要着力引导人们牢固树立时代精神追求、增强道德自律意识、
提升精神境界。正所谓“欲知得失,穷变通移”。为此,要坚定不移深化文化体制改革,坚定不移实施文化惠民工程,
深入开展中国特色社会主义宣传教育,弘扬民族精神和时代精神,推动文化事业全面繁荣、文化产业快速发展,
不断丰富人民精神世界、增强人民精神力量,切实提高文化软实力,不断增强中华民族的凝聚力,不断为...
Example2:
[Input part of news from offical sources]
Input:
国际观察|欧盟在多重挑战中寻找方向
新一届欧洲议会选举将于6日至9日举行。这是英国“脱欧”后的首场欧洲议会选举,选后欧洲领导层也将迎来新一轮换届,本次选举因此被视为欧洲政治生态的“风向标”。
欧洲目前深受乌克兰危机、巴以冲突外溢效应等影响,内外矛盾与挑战相互叠加。分析人士指出,选民的意志立场将在此次选举中得到集中体现,欧洲政治版图或面临新一轮洗牌,右翼政治势力可能“异军突起”,进一步扩大在欧洲议会的影响力,这或将深刻影响未来五年欧洲政策走向。
Output:
团结合作是欧盟发展的不竭动力。在百年变局和世纪疫情交织的复杂局面下,欧盟在抗疫和经济复苏、防务和安全、数字化和就业等领域面临诸多挑战,
需要在加强团结合作方面多些担当、多些行动。中欧作为推动多极化的两大力量,应该携手走出一条平等、合作、共赢的新时代之路。
双方应该继续坚定支持彼此核心利益和重大关切,坚定支持彼此践行真正的多边主义,坚定支持彼此维护国际公平正义,为世界注入更多稳定性和正能量。
我愿同欧方一道努力,把握好新一轮欧中合作的时机和空间,使中欧关系在危机和挑战中更加广阔、更加稳固、更加富有成果。
中方高度重视中欧关系,愿同欧方共同努力,将中欧一系列高层和战略层面的沟通和协调机制化、常态化,确保中欧关系不偏航、不走调。
中方愿同欧方一道努力,推动中欧关系迈上新台阶,更好造福双方人民。
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 7