ansilmbabl's picture
Model save
f64043e verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: cards-swin-tiny-patch4-window7-224-finetuned-v1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4106853980417199

cards-swin-tiny-patch4-window7-224-finetuned-v1

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3763
  • Accuracy: 0.4107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6417 1.0 734 1.6075 0.3000
1.577 2.0 1468 1.5511 0.3355
1.5699 3.0 2202 1.4887 0.3567
1.5361 4.0 2936 1.4659 0.3686
1.525 5.0 3670 1.4169 0.3920
1.4744 6.0 4404 1.4029 0.3957
1.4846 7.0 5138 1.3962 0.4029
1.4729 8.0 5872 1.3932 0.4026
1.4416 9.0 6606 1.3821 0.4088
1.4255 10.0 7340 1.3763 0.4107

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.17.0
  • Tokenizers 0.15.2