|
--- |
|
language: it |
|
widget: |
|
- text: "Quando nacque D'Annunzio?" |
|
context: "D'Annunzio nacque nel 1863" |
|
--- |
|
|
|
# Italian Bert Base Uncased on Squad-it |
|
|
|
## Model description |
|
|
|
This model is the uncased base version of the italian BERT (which you may find at `dbmdz/bert-base-italian-uncased`) trained on the question answering task. |
|
|
|
#### How to use |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
nlp = pipeline('question-answering', model='antoniocappiello/bert-base-italian-uncased-squad-it') |
|
|
|
# nlp(context="D'Annunzio nacque nel 1863", question="Quando nacque D'Annunzio?") |
|
# {'score': 0.9990354180335999, 'start': 22, 'end': 25, 'answer': '1863'} |
|
``` |
|
|
|
## Training data |
|
|
|
It has been trained on the question answering task using [SQuAD-it](http://sag.art.uniroma2.it/demo-software/squadit/), derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian. |
|
|
|
## Training procedure |
|
|
|
```bash |
|
python ./examples/run_squad.py \ |
|
--model_type bert \ |
|
--model_name_or_path dbmdz/bert-base-italian-uncased \ |
|
--do_train \ |
|
--do_eval \ |
|
--train_file ./squad_it_uncased/train-v1.1.json \ |
|
--predict_file ./squad_it_uncased/dev-v1.1.json \ |
|
--learning_rate 3e-5 \ |
|
--num_train_epochs 2 \ |
|
--max_seq_length 384 \ |
|
--doc_stride 128 \ |
|
--output_dir ./models/bert-base-italian-uncased-squad-it/ \ |
|
--per_gpu_eval_batch_size=3 \ |
|
--per_gpu_train_batch_size=3 \ |
|
--do_lower_case \ |
|
``` |
|
|
|
## Eval Results |
|
|
|
| Metric | # Value | |
|
| ------ | --------- | |
|
| **EM** | **63.8** | |
|
| **F1** | **75.30** | |
|
|
|
## Comparison |
|
|
|
| Model | EM | F1 score | |
|
| -------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- | |
|
| [DrQA-it trained on SQuAD-it](https://github.com/crux82/squad-it/blob/master/README.md#evaluating-a-neural-model-over-squad-it) | 56.1 | 65.9 | |
|
| This one | **63.8** | **75.30** | |