|
--- |
|
language: |
|
- hi |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- mozilla-foundation/common_voice_8_0 |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: XLS-R-1B - Hindi |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: hi |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 15.899 |
|
- name: Test CER |
|
type: cer |
|
value: 5.83 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# XLS-R-1B - Hindi |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6921 |
|
- Wer: 0.3547 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1500 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 2.0674 | 2.07 | 400 | 1.3411 | 0.8835 | |
|
| 1.324 | 4.15 | 800 | 0.9311 | 0.7142 | |
|
| 1.2023 | 6.22 | 1200 | 0.8060 | 0.6170 | |
|
| 1.1573 | 8.29 | 1600 | 0.7415 | 0.4972 | |
|
| 1.1117 | 10.36 | 2000 | 0.7248 | 0.4588 | |
|
| 1.0672 | 12.44 | 2400 | 0.6729 | 0.4350 | |
|
| 1.0336 | 14.51 | 2800 | 0.7117 | 0.4346 | |
|
| 1.0025 | 16.58 | 3200 | 0.7019 | 0.4272 | |
|
| 0.9578 | 18.65 | 3600 | 0.6792 | 0.4118 | |
|
| 0.9272 | 20.73 | 4000 | 0.6863 | 0.4156 | |
|
| 0.9321 | 22.8 | 4400 | 0.6535 | 0.3972 | |
|
| 0.8802 | 24.87 | 4800 | 0.6766 | 0.3906 | |
|
| 0.844 | 26.94 | 5200 | 0.6782 | 0.3949 | |
|
| 0.8387 | 29.02 | 5600 | 0.6916 | 0.3921 | |
|
| 0.8042 | 31.09 | 6000 | 0.6806 | 0.3797 | |
|
| 0.793 | 33.16 | 6400 | 0.7120 | 0.3831 | |
|
| 0.7567 | 35.23 | 6800 | 0.6862 | 0.3808 | |
|
| 0.7463 | 37.31 | 7200 | 0.6893 | 0.3709 | |
|
| 0.7053 | 39.38 | 7600 | 0.7096 | 0.3701 | |
|
| 0.6906 | 41.45 | 8000 | 0.6921 | 0.3676 | |
|
| 0.6891 | 43.52 | 8400 | 0.7167 | 0.3663 | |
|
| 0.658 | 45.6 | 8800 | 0.6833 | 0.3580 | |
|
| 0.6576 | 47.67 | 9200 | 0.6914 | 0.3569 | |
|
| 0.6358 | 49.74 | 9600 | 0.6922 | 0.3551 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.17.1.dev0 |
|
- Tokenizers 0.11.0 |
|
|
|
#### Evaluation Commands |
|
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi-with-lm --dataset mozilla-foundation/common_voice_8_0 --config hi --split test |
|
``` |
|
|
|
|
|
### Inference With LM |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, AutoProcessor |
|
import torchaudio.functional as F |
|
model_id = "anuragshas/wav2vec2-xls-r-1b-hi-with-lm" |
|
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test", streaming=True, use_auth_token=True)) |
|
sample = next(sample_iter) |
|
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() |
|
model = AutoModelForCTC.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
input_values = processor(resampled_audio, return_tensors="pt").input_values |
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
transcription = processor.batch_decode(logits.numpy()).text |
|
# => "तुम्हारे पास तीन महीने बचे हैं" |
|
``` |
|
|
|
### Eval results on Common Voice 8 "test" (WER): |
|
|
|
| Without LM | With LM (run `./eval.py`) | |
|
|---|---| |
|
| 26.209 | 15.899 | |
|
|