Edit model card

XLS-R-300M - Latvian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - LV dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1660
  • Wer: 0.1705

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.489 2.56 400 3.3590 1.0
2.9903 5.13 800 2.9704 1.0001
1.6712 7.69 1200 0.6179 0.6566
1.2635 10.26 1600 0.3176 0.4531
1.0819 12.82 2000 0.2517 0.3508
1.0136 15.38 2400 0.2257 0.3124
0.9625 17.95 2800 0.1975 0.2311
0.901 20.51 3200 0.1986 0.2097
0.8842 23.08 3600 0.1904 0.2039
0.8542 25.64 4000 0.1847 0.1981
0.8244 28.21 4400 0.1805 0.1847
0.7689 30.77 4800 0.1736 0.1832
0.7825 33.33 5200 0.1698 0.1821
0.7817 35.9 5600 0.1758 0.1803
0.7488 38.46 6000 0.1663 0.1760
0.7171 41.03 6400 0.1636 0.1721
0.7222 43.59 6800 0.1663 0.1729
0.7156 46.15 7200 0.1633 0.1715
0.7121 48.72 7600 0.1666 0.1718

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config lv --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config lv --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "lv", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "domāju ka viņam viss labi"

Eval results on Common Voice 8 "test" (WER):

Without LM With LM (run ./eval.py)
16.997 9.633
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm

Evaluation results