tokun / README.md
apehex's picture
Update README.md
3ec4efe verified
|
raw
history blame
7.4 kB
---
library_name: keras
---
# tokun
> `to-kun` took tokens to t-can
Current tokenizers have notorious issues that are bringing all the LLMs down.
`tokun` is a model specialized in text embedding.
It is **lossless** while providing **high input compression**.
`tokun` produces vectors of dimension 256 equivalent to 64 UTF-32-BE bytes.
IE each embedding can be thought of as a *token of length 16 characters*.
But these vectors are more than basic IDs, they keep meaningful information on their constituting parts.
## Features
The model produces vector embeddings that can be directly ingested by another model.
Regular tokens are unrelated IDs, while `tokun` has the following properties:
- **international**: `tokun` performs evenly on the whole Unicode space
- **compression**: the sequence length is divided by 16
- **embeddings**: the output vectors have only a dimension 256
- **lossless**: embeddings store all the information up to the byte level
- **built-ins**: Unicode has built-in special tokens, no need for `<|im_start|>`
- **meaningful**: embeddings are natively related to each-other based on their parts
## Installation
In all cases, the model requires the code from the package `tokun`:
```shell
pip install tokun
```
### From Hugging Face
Login to Hugging Face:
```shell
huggingface-cli login
```
Download the repository:
```python
import huggingface_hub as hh
api = hh.HfApi()
api.snapshot_download(repo_id='apehex/tokun', local_dir='tokun/')
```
Import the tokenizer and model:
```python
tokenizer = tokun.huggingface.ByteTokenizer()
model = hh.from_pretrained_keras('tokun/variants/4x16/')
```
### With Base Tensorflow / Keras
You can directly load the weights [from the repository](../models/).
For the most performant variant of the model, `4x16`:
```python
import tensorflow as tf
import tokun.model
import urllib.request
urllib.request.urlretrieve('https://github.com/apehex/tokun/raw/main/models/4x16/1/6.3.keras', 'model.keras')
model = tf.keras.models.load_model('model.keras')
```
## Usage
Since it is small (between 1 and 2M parameters depending on the variant), the model can also be [trained on Google Colab][notebook-file-tokun-train].
We will be encoding and decoding the following sample:
```python
__s = """Une unité lexicale ou token lexical ou plus simplement token est un couple composé d'un nom et d'une valeur optionnelle (e.g. 135677)."""
```
### With Hugging Face
The sequence dimension is fixed to 512 because exporting the Keras model requires to specify the input shape.
So the sample is padded to `16 * 512` characters or `64 * 512` bytes.
```python
# encode with UTF-32
__x = tokenizer.batch_encode_plus(batch_text_or_text_pairs=[__s], padding='max_length', max_length=64 * 512, add_special_tokens=False)
__x = tf.convert_to_tensor(__x['input_ids'])
# tokenize
__e = model.layers[1](__x) # encoder
# these embeddings would be the input of a LLM
__o = llm(__e) # replace with your LLM
# detokenize
__p = model.layers[2](__o) # decoder
# interpret probabilities as byte indexes
__y = tokun.pipeline.postprocess(__p)
```
```python
print(len(__s))
# 252
print(__x.shape) # 16 * 512 characters = 64 * 512 bytes
# (1, 32768)
print(__e.shape) # 512 embeddings
# (1, 512, 256)
print(__p.shape) # back to x shape
# (1, 32768, 256)
```
> Note: the base Tensorflow implementation operates on any sequence dimension (see below)
### With Base Tensorflow / Keras
```python
__x = tokun.pipeline.preprocess(text=__s, groups=[4, 16], expand=[1], flatten=True)
__e = model._encoder(__x) # final embedding = input for another model
# these embeddings would be the input of a LLM
__o = llm(__e) # replace with your LLM
# detokenize
__p = MODEL._decoder(__o)
# interpret probabilities as byte indexes
__y = tokun.pipeline.postprocess(__p)
```
The OG version doesn't fix the sequence dimension:
```python
print(len(__s))
# 252
print(__x.shape) # 4 * 252 = 1008 padded to 1024 bytes
# (1, 1024)
print(__e.shape) # 252 / 16 = 1024 / 64 = 16
# (1, 16, 256)
print(__p.shape) # back to x shape
# (1, 1024, 256)
```
## Training and evaluation data
`tokun` was **trained on random sequences** of UTF-32-BE bytes, so that it covers the first 4 planes of Unicode.
Validation was also performed on the 7 languages of [MLQA][github-mlqa] to make sure the model keeps its accuracy on regular text.
## Resources
### Notebooks
Final model:
- train: [File][notebook-file-tokun-train] / [Colab][notebook-colab-tokun-train]
- demo: [File][notebook-file-tokun-demo] / [Colab][notebook-colab-tokun-demo]
Older / simpler model iterations:
- `tokun-1`: [File][notebook-file-tokun-1] / [Colab][notebook-colab-tokun-1]
- `tokun-4`: [File][notebook-file-tokun-4] / [Colab][notebook-colab-tokun-4]
- `tokun-16`: [File][notebook-file-tokun-16] / [Colab][notebook-colab-tokun-16]
### Articles
Main article:
- on [Github][article-file-tokun]
- on [Hugging Face][article-hugging-face]
Notes on each iteration:
- `tokun-1`: [Github][article-file-tokun-1]
- `tokun-4`: [Github][article-file-tokun-4]
- `tokun-16`: [Github][article-file-tokun-16]
## TODO
See [TODO](TODO.md).
## Credits
This project was inspired by a video from Andrej Karpathy, ["Let's build the GPT tokenizer"][youtube-karpathy-tokenizer].
## License
Licensed under the [aGPLv3](LICENSE.md).
[article-file-tokun]: https://github.com/apehex/tokun/blob/main/articles/tokun.md
[article-file-tokun-1]: https://github.com/apehex/tokun/blob/main/articles/tokun.1.md
[article-file-tokun-4]: https://github.com/apehex/tokun/blob/main/articles/tokun.4.md
[article-file-tokun-16]: https://github.com/apehex/tokun/blob/main/articles/tokun.16.md
[article-hugging-face]: https://huggingface.co/blog/apehex/tokenization-is-a-dead-weight
[article-notion-tokun-1]: https://apehex.notion.site/Tokun-1-e03c438a39fe49fcb2ce303eb63b2e73
[article-notion-tokun-4]: https://apehex.notion.site/Tokun-4-c8b4a3bd1270485a908287869553e9f2
[article-notion-tokun-16]: https://apehex.notion.site/Tokun-16-ecf35d5207ab401d85d3aa21d0b09538
[notebook-colab-tokun-1]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.1.ipynb
[notebook-colab-tokun-4]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.4.ipynb
[notebook-colab-tokun-16]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.16.ipynb
[notebook-colab-tokun-demo]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.demo.ipynb
[notebook-colab-tokun-train]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.train.ipynb
[notebook-file-tokun-1]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.1.ipynb
[notebook-file-tokun-4]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.4.ipynb
[notebook-file-tokun-16]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.16.ipynb
[notebook-file-tokun-demo]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.demo.ipynb
[notebook-file-tokun-train]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.train.ipynb
[notebook-hf-tokun-demo]: ../notebooks/tokun.demo.ipynb
[notebook-hf-tokun-train]: ../notebooks/tokun.train.ipynb
[notebook-kaggle-tokun-demo]: ../notebooks/tokun.demo.ipynb
[notebook-kaggle-tokun-train]: ../notebooks/tokun.train.ipynb
[youtube-karpathy-tokenizer]: https://www.youtube.com/watch?v=zduSFxRajkE