aprlkhrnss's picture
End of training
b970123
|
raw
history blame
2.33 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.53125

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2368
  • Accuracy: 0.5312

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 5 1.2726 0.575
No log 2.0 10 1.3480 0.5062
No log 3.0 15 1.2696 0.5375
No log 4.0 20 1.2715 0.5312
No log 5.0 25 1.2360 0.5687
No log 6.0 30 1.2728 0.5125
No log 7.0 35 1.2374 0.525
No log 8.0 40 1.2484 0.5437
No log 9.0 45 1.2336 0.5563
No log 10.0 50 1.2128 0.6

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3