|
--- |
|
license: mit |
|
base_model: indolem/indobert-base-uncased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: apwic/indobert-base-uncased-finetuned-nergrit |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# apwic/indobert-base-uncased-finetuned-nergrit |
|
|
|
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.1167 |
|
- Validation Loss: 0.1784 |
|
- Train Accuracy: 0.9483 |
|
- Epoch: 24 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2352, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Accuracy | Epoch | |
|
|:----------:|:---------------:|:--------------:|:-----:| |
|
| 0.4507 | 0.1933 | 0.9437 | 0 | |
|
| 0.1708 | 0.1795 | 0.9471 | 1 | |
|
| 0.1295 | 0.1784 | 0.9483 | 2 | |
|
| 0.1169 | 0.1784 | 0.9483 | 3 | |
|
| 0.1172 | 0.1784 | 0.9483 | 4 | |
|
| 0.1180 | 0.1784 | 0.9483 | 5 | |
|
| 0.1176 | 0.1784 | 0.9483 | 6 | |
|
| 0.1172 | 0.1784 | 0.9483 | 7 | |
|
| 0.1168 | 0.1784 | 0.9483 | 8 | |
|
| 0.1174 | 0.1784 | 0.9483 | 9 | |
|
| 0.1174 | 0.1784 | 0.9483 | 10 | |
|
| 0.1178 | 0.1784 | 0.9483 | 11 | |
|
| 0.1175 | 0.1784 | 0.9483 | 12 | |
|
| 0.1175 | 0.1784 | 0.9483 | 13 | |
|
| 0.1179 | 0.1784 | 0.9483 | 14 | |
|
| 0.1176 | 0.1784 | 0.9483 | 15 | |
|
| 0.1165 | 0.1784 | 0.9483 | 16 | |
|
| 0.1179 | 0.1784 | 0.9483 | 17 | |
|
| 0.1169 | 0.1784 | 0.9483 | 18 | |
|
| 0.1170 | 0.1784 | 0.9483 | 19 | |
|
| 0.1175 | 0.1784 | 0.9483 | 20 | |
|
| 0.1177 | 0.1784 | 0.9483 | 21 | |
|
| 0.1161 | 0.1784 | 0.9483 | 22 | |
|
| 0.1174 | 0.1784 | 0.9483 | 23 | |
|
| 0.1167 | 0.1784 | 0.9483 | 24 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- TensorFlow 2.12.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.13.3 |
|
|