|
--- |
|
language: |
|
- id |
|
license: apache-2.0 |
|
base_model: LazarusNLP/IndoNanoT5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- id_liputan6 |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: liputan6-seq_bn-rf16 |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
dataset: |
|
name: id_liputan6 canonical |
|
type: id_liputan6 |
|
config: canonical |
|
split: validation |
|
args: canonical |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 27.6391 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# liputan6-seq_bn-rf16 |
|
|
|
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 canonical dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.7479 |
|
- Rouge1: 27.6391 |
|
- Rouge2: 12.5407 |
|
- Rougel: 23.5774 |
|
- Rougelsum: 25.3376 |
|
- Gen Len: 39.933 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.6241 | 1.0 | 63 | 2.7534 | 23.3287 | 9.5988 | 20.1923 | 21.2916 | 33.387 | |
|
| 2.228 | 2.0 | 126 | 2.7025 | 25.8033 | 10.8168 | 21.9451 | 23.4491 | 32.153 | |
|
| 2.0615 | 3.0 | 189 | 2.6749 | 25.8887 | 10.7586 | 22.113 | 23.8997 | 30.873 | |
|
| 1.9099 | 4.0 | 252 | 2.7197 | 26.5565 | 11.2255 | 22.6026 | 24.5495 | 31.524 | |
|
| 1.8007 | 5.0 | 315 | 2.7479 | 26.9743 | 11.4843 | 22.9863 | 24.9284 | 33.854 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|