apwic commited on
Commit
6a78d15
1 Parent(s): fbb12fb

Model save

Browse files
Files changed (1) hide show
  1. README.md +38 -3
README.md CHANGED
@@ -1,10 +1,13 @@
1
  ---
2
- language:
3
- - id
4
  license: mit
5
  base_model: indolem/indobert-base-uncased
6
  tags:
7
  - generated_from_trainer
 
 
 
 
 
8
  model-index:
9
  - name: nerugm-base-0
10
  results: []
@@ -16,6 +19,12 @@ should probably proofread and complete it, then remove this comment. -->
16
  # nerugm-base-0
17
 
18
  This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
 
 
 
 
 
 
19
 
20
  ## Model description
21
 
@@ -36,12 +45,38 @@ More information needed
36
  The following hyperparameters were used during training:
37
  - learning_rate: 5e-05
38
  - train_batch_size: 16
39
- - eval_batch_size: 4
40
  - seed: 42
41
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
  - num_epochs: 20.0
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  ### Framework versions
46
 
47
  - Transformers 4.39.3
 
1
  ---
 
 
2
  license: mit
3
  base_model: indolem/indobert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
  model-index:
12
  - name: nerugm-base-0
13
  results: []
 
19
  # nerugm-base-0
20
 
21
  This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2749
24
+ - Precision: 0.8234
25
+ - Recall: 0.8964
26
+ - F1: 0.8584
27
+ - Accuracy: 0.9631
28
 
29
  ## Model description
30
 
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 5e-05
47
  - train_batch_size: 16
48
+ - eval_batch_size: 64
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - num_epochs: 20.0
53
 
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.3551 | 1.0 | 106 | 0.1873 | 0.6789 | 0.8757 | 0.7649 | 0.9414 |
59
+ | 0.1199 | 2.0 | 212 | 0.1308 | 0.7602 | 0.8817 | 0.8164 | 0.9611 |
60
+ | 0.0746 | 3.0 | 318 | 0.1383 | 0.7755 | 0.8787 | 0.8239 | 0.9618 |
61
+ | 0.0497 | 4.0 | 424 | 0.1717 | 0.7922 | 0.8462 | 0.8183 | 0.9554 |
62
+ | 0.0289 | 5.0 | 530 | 0.1706 | 0.8027 | 0.8787 | 0.8390 | 0.9621 |
63
+ | 0.023 | 6.0 | 636 | 0.1929 | 0.7688 | 0.8757 | 0.8188 | 0.9585 |
64
+ | 0.0161 | 7.0 | 742 | 0.2457 | 0.7769 | 0.8757 | 0.8234 | 0.9539 |
65
+ | 0.0106 | 8.0 | 848 | 0.2450 | 0.7926 | 0.8817 | 0.8347 | 0.9572 |
66
+ | 0.0065 | 9.0 | 954 | 0.2315 | 0.8150 | 0.8994 | 0.8551 | 0.9629 |
67
+ | 0.0053 | 10.0 | 1060 | 0.2373 | 0.8147 | 0.8846 | 0.8482 | 0.9626 |
68
+ | 0.004 | 11.0 | 1166 | 0.2421 | 0.8283 | 0.8846 | 0.8555 | 0.9639 |
69
+ | 0.003 | 12.0 | 1272 | 0.2572 | 0.808 | 0.8964 | 0.8499 | 0.9621 |
70
+ | 0.0027 | 13.0 | 1378 | 0.2516 | 0.8135 | 0.8905 | 0.8503 | 0.9616 |
71
+ | 0.0012 | 14.0 | 1484 | 0.2636 | 0.8123 | 0.8964 | 0.8523 | 0.9649 |
72
+ | 0.002 | 15.0 | 1590 | 0.2672 | 0.8091 | 0.8905 | 0.8479 | 0.9626 |
73
+ | 0.0012 | 16.0 | 1696 | 0.2610 | 0.8130 | 0.8876 | 0.8487 | 0.9634 |
74
+ | 0.001 | 17.0 | 1802 | 0.2694 | 0.8251 | 0.8935 | 0.8580 | 0.9631 |
75
+ | 0.0012 | 18.0 | 1908 | 0.2815 | 0.8177 | 0.9024 | 0.8579 | 0.9626 |
76
+ | 0.0012 | 19.0 | 2014 | 0.2723 | 0.8229 | 0.8935 | 0.8567 | 0.9629 |
77
+ | 0.0008 | 20.0 | 2120 | 0.2749 | 0.8234 | 0.8964 | 0.8584 | 0.9631 |
78
+
79
+
80
  ### Framework versions
81
 
82
  - Transformers 4.39.3