apwic's picture
End of training
572955d verified
|
raw
history blame
3.35 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nerugm-lora-r2a1d0.05
    results: []

nerugm-lora-r2a1d0.05

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1346
  • Precision: 0.7366
  • Recall: 0.8629
  • F1: 0.7948
  • Accuracy: 0.9555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7885 1.0 528 0.4616 0.3182 0.0813 0.1296 0.8599
0.3921 2.0 1056 0.2524 0.6053 0.6798 0.6404 0.9273
0.2392 3.0 1584 0.1932 0.6500 0.7844 0.7109 0.9382
0.1931 4.0 2112 0.1676 0.6905 0.8234 0.7511 0.9444
0.1719 5.0 2640 0.1583 0.7056 0.8396 0.7668 0.9478
0.1602 6.0 3168 0.1539 0.7115 0.8582 0.7780 0.9502
0.1533 7.0 3696 0.1520 0.7031 0.8629 0.7748 0.9506
0.1455 8.0 4224 0.1456 0.7263 0.8559 0.7858 0.9525
0.1398 9.0 4752 0.1425 0.7301 0.8536 0.7870 0.9537
0.1368 10.0 5280 0.1395 0.7229 0.8536 0.7828 0.9533
0.1331 11.0 5808 0.1365 0.7360 0.8536 0.7904 0.9551
0.1305 12.0 6336 0.1377 0.7332 0.8605 0.7918 0.9549
0.1279 13.0 6864 0.1357 0.7415 0.8582 0.7956 0.9565
0.1251 14.0 7392 0.1355 0.7371 0.8652 0.7960 0.9555
0.1239 15.0 7920 0.1359 0.7366 0.8629 0.7948 0.9549
0.1231 16.0 8448 0.1347 0.7351 0.8629 0.7939 0.9551
0.122 17.0 8976 0.1353 0.7351 0.8629 0.7939 0.9555
0.1205 18.0 9504 0.1356 0.7317 0.8605 0.7909 0.9549
0.1202 19.0 10032 0.1347 0.7351 0.8629 0.7939 0.9551
0.1204 20.0 10560 0.1346 0.7366 0.8629 0.7948 0.9555

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2