apwic's picture
End of training
6e034d0 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nerugm-lora-r2a2d0.1
    results: []

nerugm-lora-r2a2d0.1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1332
  • Precision: 0.7287
  • Recall: 0.8536
  • F1: 0.7862
  • Accuracy: 0.9555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7886 1.0 528 0.4607 0.3243 0.0837 0.1330 0.8597
0.3911 2.0 1056 0.2542 0.6081 0.6915 0.6471 0.9293
0.2384 3.0 1584 0.1934 0.6527 0.7937 0.7163 0.9376
0.1934 4.0 2112 0.1678 0.6880 0.8187 0.7477 0.9446
0.172 5.0 2640 0.1589 0.6901 0.8373 0.7566 0.9468
0.1602 6.0 3168 0.1533 0.6931 0.8489 0.7631 0.9488
0.1532 7.0 3696 0.1505 0.6935 0.8559 0.7662 0.9498
0.1457 8.0 4224 0.1456 0.7103 0.8536 0.7754 0.9522
0.1401 9.0 4752 0.1418 0.7301 0.8536 0.7870 0.9543
0.1375 10.0 5280 0.1388 0.7308 0.8582 0.7894 0.9551
0.1331 11.0 5808 0.1360 0.7308 0.8582 0.7894 0.9555
0.1304 12.0 6336 0.1365 0.7258 0.8536 0.7845 0.9549
0.1285 13.0 6864 0.1343 0.7380 0.8512 0.7906 0.9559
0.1255 14.0 7392 0.1345 0.7401 0.8605 0.7958 0.9559
0.1249 15.0 7920 0.1346 0.7332 0.8605 0.7918 0.9549
0.1238 16.0 8448 0.1342 0.7307 0.8559 0.7883 0.9551
0.1232 17.0 8976 0.1342 0.7326 0.8582 0.7905 0.9557
0.1215 18.0 9504 0.1351 0.7317 0.8605 0.7909 0.9549
0.1209 19.0 10032 0.1337 0.7278 0.8559 0.7866 0.9547
0.1207 20.0 10560 0.1332 0.7287 0.8536 0.7862 0.9555

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2