apwic's picture
End of training
94a2fcb verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nerugm-lora-r4a0d0.05
    results: []

nerugm-lora-r4a0d0.05

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1305
  • Precision: 0.7407
  • Recall: 0.8698
  • F1: 0.8001
  • Accuracy: 0.9579

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7682 1.0 528 0.4394 0.4048 0.1185 0.1834 0.8663
0.3466 2.0 1056 0.2217 0.6022 0.7379 0.6632 0.9327
0.2131 3.0 1584 0.1728 0.6765 0.8396 0.7493 0.9428
0.1759 4.0 2112 0.1509 0.7221 0.8559 0.7833 0.9516
0.1563 5.0 2640 0.1422 0.7303 0.8605 0.7901 0.9533
0.1464 6.0 3168 0.1429 0.7202 0.8722 0.7890 0.9541
0.1394 7.0 3696 0.1440 0.7153 0.8745 0.7869 0.9525
0.1325 8.0 4224 0.1398 0.7274 0.8791 0.7961 0.9553
0.1269 9.0 4752 0.1341 0.7420 0.8675 0.7999 0.9579
0.124 10.0 5280 0.1331 0.7379 0.8768 0.8014 0.9565
0.1194 11.0 5808 0.1329 0.7389 0.8815 0.8039 0.9569
0.1171 12.0 6336 0.1337 0.7384 0.8791 0.8027 0.9567
0.1153 13.0 6864 0.1294 0.7447 0.8745 0.8044 0.9587
0.1119 14.0 7392 0.1310 0.7472 0.8791 0.8078 0.9573
0.1109 15.0 7920 0.1312 0.7457 0.8722 0.8040 0.9579
0.1102 16.0 8448 0.1309 0.7442 0.8791 0.8061 0.9581
0.1095 17.0 8976 0.1314 0.7447 0.8815 0.8073 0.9587
0.1073 18.0 9504 0.1323 0.7403 0.8745 0.8018 0.9577
0.107 19.0 10032 0.1300 0.7407 0.8698 0.8001 0.9581
0.1073 20.0 10560 0.1305 0.7407 0.8698 0.8001 0.9579

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2