apwic's picture
End of training
db0dd4c verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nerugm-lora-r4a1d0.15
    results: []

nerugm-lora-r4a1d0.15

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1301
  • Precision: 0.7357
  • Recall: 0.8652
  • F1: 0.7952
  • Accuracy: 0.9577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7663 1.0 528 0.4380 0.3934 0.1116 0.1738 0.8659
0.3481 2.0 1056 0.2220 0.6018 0.7403 0.6639 0.9339
0.2139 3.0 1584 0.1790 0.6561 0.8327 0.7339 0.9400
0.1777 4.0 2112 0.1535 0.7164 0.8559 0.7800 0.9512
0.1578 5.0 2640 0.1445 0.7367 0.8698 0.7978 0.9535
0.1469 6.0 3168 0.1441 0.7139 0.8745 0.7861 0.9535
0.1399 7.0 3696 0.1453 0.7175 0.8838 0.7920 0.9524
0.1333 8.0 4224 0.1403 0.7298 0.8838 0.7995 0.9547
0.1273 9.0 4752 0.1368 0.7387 0.8722 0.7999 0.9563
0.1246 10.0 5280 0.1342 0.7426 0.8768 0.8042 0.9569
0.1195 11.0 5808 0.1351 0.7359 0.8791 0.8012 0.9571
0.1172 12.0 6336 0.1349 0.7373 0.8791 0.8020 0.9573
0.1155 13.0 6864 0.1296 0.7441 0.8768 0.8050 0.9581
0.1118 14.0 7392 0.1302 0.7367 0.8698 0.7978 0.9577
0.1111 15.0 7920 0.1322 0.7426 0.8768 0.8042 0.9577
0.1097 16.0 8448 0.1303 0.7353 0.8698 0.7969 0.9577
0.1094 17.0 8976 0.1306 0.7343 0.8722 0.7973 0.9573
0.1077 18.0 9504 0.1319 0.7372 0.8722 0.7990 0.9577
0.1065 19.0 10032 0.1296 0.7376 0.8675 0.7973 0.9577
0.1078 20.0 10560 0.1301 0.7357 0.8652 0.7952 0.9577

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2