Edit model card

nerui-pt-pl5-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0528
  • Location Precision: 0.925
  • Location Recall: 0.9569
  • Location F1: 0.9407
  • Location Number: 116
  • Organization Precision: 0.9355
  • Organization Recall: 0.9177
  • Organization F1: 0.9265
  • Organization Number: 158
  • Person Precision: 0.9762
  • Person Recall: 0.9919
  • Person F1: 0.9840
  • Person Number: 124
  • Overall Precision: 0.9451
  • Overall Recall: 0.9523
  • Overall F1: 0.9487
  • Overall Accuracy: 0.9896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Location Precision Location Recall Location F1 Location Number Organization Precision Organization Recall Organization F1 Organization Number Person Precision Person Recall Person F1 Person Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8931 1.0 96 0.4021 0.5 0.0086 0.0169 116 0.2467 0.2342 0.2403 158 0.3418 0.2177 0.2660 124 0.2814 0.1633 0.2067 0.8597
0.3656 2.0 192 0.2170 0.4146 0.4397 0.4268 116 0.6122 0.5696 0.5902 158 0.4316 0.6613 0.5223 124 0.4848 0.5603 0.5198 0.9264
0.2175 3.0 288 0.1159 0.7670 0.6810 0.7215 116 0.6923 0.7975 0.7412 158 0.9098 0.9758 0.9416 124 0.7799 0.8191 0.7990 0.9649
0.152 4.0 384 0.0896 0.7939 0.8966 0.8421 116 0.7791 0.8481 0.8121 158 0.9389 0.9919 0.9647 124 0.8318 0.9070 0.8678 0.9706
0.1153 5.0 480 0.0621 0.8947 0.8793 0.8870 116 0.8263 0.8734 0.8492 158 0.9606 0.9839 0.9721 124 0.8873 0.9095 0.8983 0.9778
0.1017 6.0 576 0.0462 0.8425 0.9224 0.8807 116 0.8614 0.9051 0.8827 158 0.9762 0.9919 0.9840 124 0.8902 0.9372 0.9131 0.9846
0.0877 7.0 672 0.0414 0.9292 0.9052 0.9170 116 0.8970 0.9367 0.9164 158 0.984 0.9919 0.9880 124 0.9330 0.9447 0.9388 0.9857
0.0772 8.0 768 0.0370 0.9 0.9310 0.9153 116 0.9074 0.9304 0.9187 158 0.9762 0.9919 0.9840 124 0.9265 0.9497 0.9380 0.9874
0.0747 9.0 864 0.0418 0.9024 0.9569 0.9289 116 0.9202 0.9494 0.9346 158 0.984 0.9919 0.9880 124 0.9343 0.9648 0.9493 0.9860
0.0712 10.0 960 0.0418 0.8769 0.9828 0.9268 116 0.9419 0.9241 0.9329 158 0.9762 0.9919 0.9840 124 0.9319 0.9623 0.9468 0.9852
0.0645 11.0 1056 0.0347 0.9076 0.9310 0.9191 116 0.9255 0.9430 0.9342 158 0.984 0.9919 0.9880 124 0.9383 0.9548 0.9465 0.9885
0.0594 12.0 1152 0.0345 0.9153 0.9310 0.9231 116 0.8970 0.9367 0.9164 158 0.9762 0.9919 0.9840 124 0.9267 0.9523 0.9393 0.9876
0.0584 13.0 1248 0.0307 0.9231 0.9310 0.9270 116 0.9437 0.9557 0.9497 158 0.9762 0.9919 0.9840 124 0.9479 0.9598 0.9538 0.9907
0.0533 14.0 1344 0.0347 0.9160 0.9397 0.9277 116 0.9187 0.9304 0.9245 158 0.9762 0.9919 0.9840 124 0.9358 0.9523 0.9440 0.9879
0.051 15.0 1440 0.0343 0.9174 0.9569 0.9367 116 0.9308 0.9367 0.9338 158 0.984 0.9919 0.9880 124 0.9432 0.9598 0.9514 0.9890
0.0498 16.0 1536 0.0346 0.9016 0.9483 0.9244 116 0.9346 0.9051 0.9196 158 0.9685 0.9919 0.9801 124 0.9353 0.9447 0.94 0.9885
0.0452 17.0 1632 0.0351 0.8952 0.9569 0.925 116 0.9231 0.9114 0.9172 158 0.984 0.9919 0.9880 124 0.9333 0.9497 0.9415 0.9871
0.0437 18.0 1728 0.0351 0.9091 0.9483 0.9283 116 0.9375 0.9494 0.9434 158 0.984 0.9919 0.9880 124 0.9433 0.9623 0.9527 0.9887
0.0419 19.0 1824 0.0332 0.9364 0.8879 0.9115 116 0.9259 0.9494 0.9375 158 0.9762 0.9919 0.9840 124 0.9447 0.9447 0.9447 0.9890
0.0409 20.0 1920 0.0356 0.9310 0.9310 0.9310 116 0.9085 0.9430 0.9255 158 0.9762 0.9919 0.9840 124 0.9360 0.9548 0.9453 0.9890
0.0403 21.0 2016 0.0291 0.8952 0.9569 0.925 116 0.9416 0.9177 0.9295 158 0.984 0.9919 0.9880 124 0.9404 0.9523 0.9463 0.9890
0.0368 22.0 2112 0.0358 0.9386 0.9224 0.9304 116 0.9308 0.9367 0.9338 158 0.9685 0.9919 0.9801 124 0.945 0.9497 0.9474 0.9896
0.0402 23.0 2208 0.0298 0.9412 0.9655 0.9532 116 0.9308 0.9367 0.9338 158 0.9762 0.9919 0.9840 124 0.9480 0.9623 0.9551 0.9904
0.0353 24.0 2304 0.0323 0.925 0.9569 0.9407 116 0.9423 0.9304 0.9363 158 0.984 0.9919 0.9880 124 0.9501 0.9573 0.9537 0.9896
0.0332 25.0 2400 0.0373 0.9187 0.9741 0.9456 116 0.9150 0.8861 0.9003 158 0.9762 0.9919 0.9840 124 0.9353 0.9447 0.94 0.9887
0.0343 26.0 2496 0.0405 0.925 0.9569 0.9407 116 0.9182 0.9241 0.9211 158 0.984 0.9919 0.9880 124 0.9406 0.9548 0.9476 0.9885
0.0342 27.0 2592 0.0346 0.925 0.9569 0.9407 116 0.9423 0.9304 0.9363 158 0.9685 0.9919 0.9801 124 0.9454 0.9573 0.9513 0.9887
0.032 28.0 2688 0.0441 0.9153 0.9310 0.9231 116 0.9359 0.9241 0.9299 158 0.9685 0.9919 0.9801 124 0.9401 0.9472 0.9437 0.9871
0.0275 29.0 2784 0.0447 0.9397 0.9397 0.9397 116 0.9080 0.9367 0.9221 158 0.984 0.9919 0.9880 124 0.9406 0.9548 0.9476 0.9876
0.0273 30.0 2880 0.0438 0.9386 0.9224 0.9304 116 0.9146 0.9494 0.9317 158 0.984 0.9919 0.9880 124 0.9429 0.9548 0.9488 0.9885
0.0287 31.0 2976 0.0357 0.9180 0.9655 0.9412 116 0.9474 0.9114 0.9290 158 0.9762 0.9919 0.9840 124 0.9475 0.9523 0.9499 0.9901
0.0274 32.0 3072 0.0403 0.9024 0.9569 0.9289 116 0.9281 0.8987 0.9132 158 0.9762 0.9919 0.9840 124 0.9353 0.9447 0.94 0.9882
0.0284 33.0 3168 0.0407 0.9098 0.9569 0.9328 116 0.9346 0.9051 0.9196 158 0.9762 0.9919 0.9840 124 0.9401 0.9472 0.9437 0.9879
0.0269 34.0 3264 0.0400 0.925 0.9569 0.9407 116 0.9198 0.9430 0.9312 158 0.984 0.9919 0.9880 124 0.9410 0.9623 0.9516 0.9896
0.0245 35.0 3360 0.0387 0.9391 0.9310 0.9351 116 0.9030 0.9430 0.9226 158 0.9762 0.9919 0.9840 124 0.9360 0.9548 0.9453 0.9885
0.0251 36.0 3456 0.0368 0.925 0.9569 0.9407 116 0.925 0.9367 0.9308 158 0.984 0.9919 0.9880 124 0.9432 0.9598 0.9514 0.9896
0.0243 37.0 3552 0.0389 0.9316 0.9397 0.9356 116 0.9363 0.9304 0.9333 158 0.9685 0.9919 0.9801 124 0.9451 0.9523 0.9487 0.9896
0.0242 38.0 3648 0.0401 0.8926 0.9310 0.9114 116 0.9295 0.9177 0.9236 158 0.9762 0.9919 0.9840 124 0.9330 0.9447 0.9388 0.9879
0.0244 39.0 3744 0.0407 0.925 0.9569 0.9407 116 0.9419 0.9241 0.9329 158 0.9685 0.9919 0.9801 124 0.9453 0.9548 0.95 0.9876
0.0211 40.0 3840 0.0433 0.9244 0.9483 0.9362 116 0.9259 0.9494 0.9375 158 0.9762 0.9919 0.9840 124 0.9410 0.9623 0.9516 0.9890
0.0223 41.0 3936 0.0365 0.9402 0.9483 0.9442 116 0.9193 0.9367 0.9279 158 0.9762 0.9919 0.9840 124 0.9431 0.9573 0.9501 0.9893
0.0224 42.0 4032 0.0392 0.9322 0.9483 0.9402 116 0.9193 0.9367 0.9279 158 0.9762 0.9919 0.9840 124 0.9407 0.9573 0.9489 0.9896
0.0197 43.0 4128 0.0372 0.9237 0.9397 0.9316 116 0.9245 0.9304 0.9274 158 0.9609 0.9919 0.9762 124 0.9358 0.9523 0.9440 0.9890
0.022 44.0 4224 0.0401 0.9328 0.9569 0.9447 116 0.9177 0.9177 0.9177 158 0.9685 0.9919 0.9801 124 0.9381 0.9523 0.9451 0.9885
0.0192 45.0 4320 0.0415 0.925 0.9569 0.9407 116 0.9355 0.9177 0.9265 158 0.9762 0.9919 0.9840 124 0.9451 0.9523 0.9487 0.9887
0.0197 46.0 4416 0.0386 0.9187 0.9741 0.9456 116 0.9245 0.9304 0.9274 158 0.9762 0.9919 0.9840 124 0.9387 0.9623 0.9504 0.9901
0.02 47.0 4512 0.0422 0.9402 0.9483 0.9442 116 0.9264 0.9557 0.9408 158 0.9685 0.9919 0.9801 124 0.9435 0.9648 0.9540 0.9893
0.0192 48.0 4608 0.0388 0.9180 0.9655 0.9412 116 0.9351 0.9114 0.9231 158 0.984 0.9919 0.9880 124 0.9451 0.9523 0.9487 0.9879
0.0182 49.0 4704 0.0419 0.9339 0.9741 0.9536 116 0.9430 0.9430 0.9430 158 0.984 0.9919 0.9880 124 0.9530 0.9673 0.9601 0.9896
0.0182 50.0 4800 0.0436 0.9333 0.9655 0.9492 116 0.9172 0.9114 0.9143 158 0.9685 0.9919 0.9801 124 0.9381 0.9523 0.9451 0.9882
0.0196 51.0 4896 0.0464 0.9174 0.9569 0.9367 116 0.9416 0.9177 0.9295 158 0.9609 0.9919 0.9762 124 0.9404 0.9523 0.9463 0.9876
0.016 52.0 4992 0.0498 0.9024 0.9569 0.9289 116 0.9351 0.9114 0.9231 158 0.9609 0.9919 0.9762 124 0.9333 0.9497 0.9415 0.9871
0.0174 53.0 5088 0.0477 0.9402 0.9483 0.9442 116 0.9487 0.9367 0.9427 158 0.9609 0.9919 0.9762 124 0.9501 0.9573 0.9537 0.9887
0.0156 54.0 5184 0.0507 0.9402 0.9483 0.9442 116 0.9423 0.9304 0.9363 158 0.9685 0.9919 0.9801 124 0.95 0.9548 0.9524 0.9882
0.0161 55.0 5280 0.0494 0.9402 0.9483 0.9442 116 0.9295 0.9177 0.9236 158 0.9685 0.9919 0.9801 124 0.945 0.9497 0.9474 0.9887
0.0154 56.0 5376 0.0463 0.9167 0.9483 0.9322 116 0.9177 0.9177 0.9177 158 0.9762 0.9919 0.9840 124 0.9356 0.9497 0.9426 0.9885
0.0159 57.0 5472 0.0475 0.9483 0.9483 0.9483 116 0.9187 0.9304 0.9245 158 0.9762 0.9919 0.9840 124 0.9453 0.9548 0.95 0.9882
0.0159 58.0 5568 0.0499 0.9098 0.9569 0.9328 116 0.9412 0.9114 0.9260 158 0.9762 0.9919 0.9840 124 0.9426 0.9497 0.9462 0.9874
0.0154 59.0 5664 0.0464 0.925 0.9569 0.9407 116 0.9299 0.9241 0.9270 158 0.9685 0.9919 0.9801 124 0.9406 0.9548 0.9476 0.9882
0.0146 60.0 5760 0.0502 0.9106 0.9655 0.9372 116 0.9427 0.9367 0.9397 158 0.9685 0.9919 0.9801 124 0.9410 0.9623 0.9516 0.9882
0.0164 61.0 5856 0.0480 0.9180 0.9655 0.9412 116 0.9299 0.9241 0.9270 158 0.984 0.9919 0.9880 124 0.9431 0.9573 0.9501 0.9879
0.0126 62.0 5952 0.0538 0.8952 0.9569 0.925 116 0.9221 0.8987 0.9103 158 0.9762 0.9919 0.9840 124 0.9307 0.9447 0.9377 0.9871
0.0142 63.0 6048 0.0504 0.9492 0.9655 0.9573 116 0.9236 0.9177 0.9206 158 0.984 0.9919 0.9880 124 0.95 0.9548 0.9524 0.9887
0.0131 64.0 6144 0.0474 0.9569 0.9569 0.9569 116 0.9434 0.9494 0.9464 158 0.9685 0.9919 0.9801 124 0.9552 0.9648 0.96 0.9890
0.0144 65.0 6240 0.0501 0.9256 0.9655 0.9451 116 0.9355 0.9177 0.9265 158 0.976 0.9839 0.9799 124 0.9451 0.9523 0.9487 0.9876
0.0135 66.0 6336 0.0521 0.9328 0.9569 0.9447 116 0.9241 0.9241 0.9241 158 0.9685 0.9919 0.9801 124 0.9406 0.9548 0.9476 0.9876
0.0162 67.0 6432 0.0534 0.925 0.9569 0.9407 116 0.9290 0.9114 0.9201 158 0.9685 0.9919 0.9801 124 0.9403 0.9497 0.9450 0.9863
0.0136 68.0 6528 0.0537 0.925 0.9569 0.9407 116 0.9423 0.9304 0.9363 158 0.9762 0.9919 0.9840 124 0.9478 0.9573 0.9525 0.9882
0.0138 69.0 6624 0.0513 0.9244 0.9483 0.9362 116 0.9423 0.9304 0.9363 158 0.9762 0.9919 0.9840 124 0.9476 0.9548 0.9512 0.9887
0.0135 70.0 6720 0.0554 0.925 0.9569 0.9407 116 0.9299 0.9241 0.9270 158 0.9685 0.9919 0.9801 124 0.9406 0.9548 0.9476 0.9871
0.0121 71.0 6816 0.0524 0.9483 0.9483 0.9483 116 0.9255 0.9430 0.9342 158 0.9762 0.9919 0.9840 124 0.9479 0.9598 0.9538 0.9885
0.0131 72.0 6912 0.0525 0.925 0.9569 0.9407 116 0.9295 0.9177 0.9236 158 0.9685 0.9919 0.9801 124 0.9404 0.9523 0.9463 0.9882
0.0129 73.0 7008 0.0528 0.9167 0.9483 0.9322 116 0.9355 0.9177 0.9265 158 0.9606 0.9839 0.9721 124 0.9378 0.9472 0.9425 0.9876
0.0118 74.0 7104 0.0508 0.9244 0.9483 0.9362 116 0.9419 0.9241 0.9329 158 0.9606 0.9839 0.9721 124 0.9426 0.9497 0.9462 0.9885
0.0109 75.0 7200 0.0538 0.9174 0.9569 0.9367 116 0.9355 0.9177 0.9265 158 0.9531 0.9839 0.9683 124 0.9356 0.9497 0.9426 0.9882
0.0115 76.0 7296 0.0543 0.9174 0.9569 0.9367 116 0.9416 0.9177 0.9295 158 0.9531 0.9839 0.9683 124 0.9380 0.9497 0.9438 0.9882
0.0121 77.0 7392 0.0549 0.9174 0.9569 0.9367 116 0.9290 0.9114 0.9201 158 0.9606 0.9839 0.9721 124 0.9355 0.9472 0.9413 0.9874
0.0116 78.0 7488 0.0531 0.9174 0.9569 0.9367 116 0.9103 0.8987 0.9045 158 0.9606 0.9839 0.9721 124 0.9282 0.9422 0.9352 0.9863
0.0131 79.0 7584 0.0491 0.9402 0.9483 0.9442 116 0.9497 0.9557 0.9527 158 0.9685 0.9919 0.9801 124 0.9529 0.9648 0.9588 0.9890
0.0113 80.0 7680 0.0502 0.9483 0.9483 0.9483 116 0.9057 0.9114 0.9085 158 0.9609 0.9919 0.9762 124 0.9355 0.9472 0.9413 0.9874
0.0114 81.0 7776 0.0505 0.9407 0.9569 0.9487 116 0.9172 0.9114 0.9143 158 0.9685 0.9919 0.9801 124 0.9403 0.9497 0.9450 0.9882
0.0101 82.0 7872 0.0548 0.9328 0.9569 0.9447 116 0.9226 0.9051 0.9137 158 0.9609 0.9919 0.9762 124 0.9378 0.9472 0.9425 0.9871
0.0098 83.0 7968 0.0543 0.925 0.9569 0.9407 116 0.9167 0.9051 0.9108 158 0.9606 0.9839 0.9721 124 0.9330 0.9447 0.9388 0.9871
0.01 84.0 8064 0.0549 0.9487 0.9569 0.9528 116 0.9359 0.9241 0.9299 158 0.9685 0.9919 0.9801 124 0.95 0.9548 0.9524 0.9874
0.0106 85.0 8160 0.0525 0.9333 0.9655 0.9492 116 0.9299 0.9241 0.9270 158 0.9685 0.9919 0.9801 124 0.9431 0.9573 0.9501 0.9890
0.0102 86.0 8256 0.0532 0.9407 0.9569 0.9487 116 0.9299 0.9241 0.9270 158 0.9683 0.9839 0.976 124 0.9451 0.9523 0.9487 0.9879
0.0092 87.0 8352 0.0539 0.9174 0.9569 0.9367 116 0.9236 0.9177 0.9206 158 0.9683 0.9839 0.976 124 0.9356 0.9497 0.9426 0.9879
0.0095 88.0 8448 0.0539 0.9174 0.9569 0.9367 116 0.9359 0.9241 0.9299 158 0.9683 0.9839 0.976 124 0.9404 0.9523 0.9463 0.9874
0.0099 89.0 8544 0.0526 0.925 0.9569 0.9407 116 0.9367 0.9367 0.9367 158 0.9762 0.9919 0.9840 124 0.9455 0.9598 0.9526 0.9890
0.0095 90.0 8640 0.0532 0.9407 0.9569 0.9487 116 0.9423 0.9304 0.9363 158 0.9685 0.9919 0.9801 124 0.9501 0.9573 0.9537 0.9885
0.0099 91.0 8736 0.0521 0.925 0.9569 0.9407 116 0.9359 0.9241 0.9299 158 0.9762 0.9919 0.9840 124 0.9453 0.9548 0.95 0.9887
0.0095 92.0 8832 0.0547 0.925 0.9569 0.9407 116 0.9241 0.9241 0.9241 158 0.9683 0.9839 0.976 124 0.9381 0.9523 0.9451 0.9879
0.0096 93.0 8928 0.0536 0.9407 0.9569 0.9487 116 0.9359 0.9241 0.9299 158 0.9606 0.9839 0.9721 124 0.9451 0.9523 0.9487 0.9885
0.009 94.0 9024 0.0538 0.9328 0.9569 0.9447 116 0.9295 0.9177 0.9236 158 0.9685 0.9919 0.9801 124 0.9428 0.9523 0.9475 0.9885
0.0094 95.0 9120 0.0531 0.925 0.9569 0.9407 116 0.9355 0.9177 0.9265 158 0.9762 0.9919 0.9840 124 0.9451 0.9523 0.9487 0.9887
0.0083 96.0 9216 0.0527 0.925 0.9569 0.9407 116 0.9295 0.9177 0.9236 158 0.9762 0.9919 0.9840 124 0.9428 0.9523 0.9475 0.9887
0.0099 97.0 9312 0.0537 0.925 0.9569 0.9407 116 0.9355 0.9177 0.9265 158 0.9762 0.9919 0.9840 124 0.9451 0.9523 0.9487 0.9890
0.0078 98.0 9408 0.0530 0.925 0.9569 0.9407 116 0.9355 0.9177 0.9265 158 0.9762 0.9919 0.9840 124 0.9451 0.9523 0.9487 0.9893
0.0093 99.0 9504 0.0528 0.925 0.9569 0.9407 116 0.9355 0.9177 0.9265 158 0.9762 0.9919 0.9840 124 0.9451 0.9523 0.9487 0.9893
0.0086 100.0 9600 0.0528 0.925 0.9569 0.9407 116 0.9355 0.9177 0.9265 158 0.9762 0.9919 0.9840 124 0.9451 0.9523 0.9487 0.9896

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for apwic/nerui-pt-pl5-1

Finetuned
(367)
this model