Edit model card

nerui-seq_bn-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0410
  • Location Precision: 0.9417
  • Location Recall: 0.9741
  • Location F1: 0.9576
  • Location Number: 116
  • Organization Precision: 0.9548
  • Organization Recall: 0.9367
  • Organization F1: 0.9457
  • Organization Number: 158
  • Person Precision: 0.9762
  • Person Recall: 0.9919
  • Person F1: 0.9840
  • Person Number: 124
  • Overall Precision: 0.9576
  • Overall Recall: 0.9648
  • Overall F1: 0.9612
  • Overall Accuracy: 0.9896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Location Precision Location Recall Location F1 Location Number Organization Precision Organization Recall Organization F1 Organization Number Person Precision Person Recall Person F1 Person Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8476 1.0 96 0.5342 0.0 0.0 0.0 116 0.0 0.0 0.0 158 0.0 0.0 0.0 124 0.0 0.0 0.0 0.8394
0.4619 2.0 192 0.3106 0.4107 0.1983 0.2674 116 0.3641 0.4494 0.4023 158 0.3202 0.5242 0.3976 124 0.3502 0.3995 0.3732 0.8998
0.309 3.0 288 0.2281 0.4298 0.4224 0.4261 116 0.5021 0.7468 0.6005 158 0.5952 0.8065 0.6849 124 0.5164 0.6709 0.5836 0.9385
0.2191 4.0 384 0.1372 0.5969 0.6638 0.6286 116 0.6848 0.7975 0.7368 158 0.8369 0.9516 0.8906 124 0.7070 0.8065 0.7535 0.9624
0.1534 5.0 480 0.0976 0.752 0.8103 0.7801 116 0.7706 0.8291 0.7988 158 0.9104 0.9839 0.9457 124 0.8089 0.8719 0.8392 0.9728
0.1245 6.0 576 0.0794 0.8175 0.8879 0.8512 116 0.7917 0.8418 0.8160 158 0.9318 0.9919 0.9609 124 0.8427 0.9020 0.8714 0.9764
0.1074 7.0 672 0.0701 0.832 0.8966 0.8631 116 0.8405 0.8671 0.8536 158 0.9535 0.9919 0.9723 124 0.8729 0.9146 0.8933 0.9800
0.0956 8.0 768 0.0613 0.8413 0.9138 0.8760 116 0.8580 0.8797 0.8688 158 0.9609 0.9919 0.9762 124 0.8846 0.9246 0.9042 0.9819
0.0854 9.0 864 0.0615 0.864 0.9310 0.8963 116 0.8161 0.8987 0.8554 158 0.9535 0.9919 0.9723 124 0.8715 0.9372 0.9031 0.9802
0.0781 10.0 960 0.0559 0.8770 0.9224 0.8992 116 0.8494 0.8924 0.8704 158 0.9535 0.9919 0.9723 124 0.8897 0.9322 0.9104 0.9819
0.0773 11.0 1056 0.0502 0.872 0.9397 0.9046 116 0.8773 0.9051 0.8910 158 0.9609 0.9919 0.9762 124 0.9014 0.9422 0.9214 0.9838
0.0701 12.0 1152 0.0493 0.9008 0.9397 0.9198 116 0.8896 0.9177 0.9034 158 0.9531 0.9839 0.9683 124 0.9126 0.9447 0.9284 0.9846
0.0653 13.0 1248 0.0436 0.9316 0.9397 0.9356 116 0.9177 0.9177 0.9177 158 0.9685 0.9919 0.9801 124 0.9378 0.9472 0.9425 0.9863
0.0636 14.0 1344 0.0463 0.888 0.9569 0.9212 116 0.8968 0.8797 0.8882 158 0.9685 0.9919 0.9801 124 0.9165 0.9372 0.9267 0.9838
0.0611 15.0 1440 0.0423 0.9160 0.9397 0.9277 116 0.9125 0.9241 0.9182 158 0.9685 0.9919 0.9801 124 0.9310 0.9497 0.9403 0.9868
0.0613 16.0 1536 0.0437 0.9032 0.9655 0.9333 116 0.8639 0.9241 0.8930 158 0.9762 0.9919 0.9840 124 0.9093 0.9573 0.9327 0.9857
0.0625 17.0 1632 0.0420 0.9333 0.9655 0.9492 116 0.9241 0.9241 0.9241 158 0.9685 0.9919 0.9801 124 0.9407 0.9573 0.9489 0.9874
0.0532 18.0 1728 0.0368 0.9322 0.9483 0.9402 116 0.9074 0.9304 0.9187 158 0.984 0.9919 0.9880 124 0.9383 0.9548 0.9465 0.9879
0.0501 19.0 1824 0.0369 0.9652 0.9569 0.9610 116 0.9130 0.9304 0.9216 158 0.984 0.9919 0.9880 124 0.9501 0.9573 0.9537 0.9890
0.047 20.0 1920 0.0409 0.8943 0.9483 0.9205 116 0.8810 0.9367 0.9080 158 0.9685 0.9919 0.9801 124 0.9115 0.9573 0.9338 0.9855
0.0464 21.0 2016 0.0365 0.8943 0.9483 0.9205 116 0.9062 0.9177 0.9119 158 0.9762 0.9919 0.9840 124 0.9242 0.9497 0.9368 0.9865
0.045 22.0 2112 0.0363 0.9328 0.9569 0.9447 116 0.8862 0.9367 0.9108 158 0.984 0.9919 0.9880 124 0.9294 0.9598 0.9444 0.9876
0.0416 23.0 2208 0.0357 0.9256 0.9655 0.9451 116 0.9182 0.9241 0.9211 158 0.984 0.9919 0.9880 124 0.9407 0.9573 0.9489 0.9887
0.042 24.0 2304 0.0373 0.925 0.9569 0.9407 116 0.9231 0.9114 0.9172 158 0.984 0.9919 0.9880 124 0.9426 0.9497 0.9462 0.9876
0.0394 25.0 2400 0.0363 0.9328 0.9569 0.9447 116 0.9313 0.9430 0.9371 158 0.9685 0.9919 0.9801 124 0.9433 0.9623 0.9527 0.9885
0.0362 26.0 2496 0.0338 0.9573 0.9655 0.9614 116 0.9259 0.9494 0.9375 158 0.9762 0.9919 0.9840 124 0.9506 0.9673 0.9589 0.9898
0.0379 27.0 2592 0.0337 0.9573 0.9655 0.9614 116 0.9085 0.9430 0.9255 158 0.9762 0.9919 0.9840 124 0.9435 0.9648 0.9540 0.9890
0.0328 28.0 2688 0.0362 0.9316 0.9397 0.9356 116 0.8869 0.9430 0.9141 158 0.9685 0.9919 0.9801 124 0.9248 0.9573 0.9407 0.9865
0.0347 29.0 2784 0.0354 0.9412 0.9655 0.9532 116 0.8982 0.9494 0.9231 158 0.9762 0.9919 0.9840 124 0.9345 0.9673 0.9506 0.9876
0.0314 30.0 2880 0.0360 0.9483 0.9483 0.9483 116 0.8922 0.9430 0.9169 158 0.9762 0.9919 0.9840 124 0.9340 0.9598 0.9467 0.9874
0.0312 31.0 2976 0.0323 0.9333 0.9655 0.9492 116 0.9193 0.9367 0.9279 158 0.9762 0.9919 0.9840 124 0.9410 0.9623 0.9516 0.9879
0.0295 32.0 3072 0.0314 0.9412 0.9655 0.9532 116 0.9554 0.9494 0.9524 158 0.984 0.9919 0.9880 124 0.9601 0.9673 0.9637 0.9907
0.0276 33.0 3168 0.0348 0.9492 0.9655 0.9573 116 0.9308 0.9367 0.9338 158 0.9762 0.9919 0.9840 124 0.9504 0.9623 0.9563 0.9893
0.0291 34.0 3264 0.0333 0.9339 0.9741 0.9536 116 0.9430 0.9430 0.9430 158 0.9762 0.9919 0.9840 124 0.9506 0.9673 0.9589 0.9904
0.0271 35.0 3360 0.0335 0.9402 0.9483 0.9442 116 0.9371 0.9430 0.9401 158 0.9762 0.9919 0.9840 124 0.9502 0.9598 0.9550 0.9898
0.0256 36.0 3456 0.0360 0.9417 0.9741 0.9576 116 0.9313 0.9430 0.9371 158 0.9762 0.9919 0.9840 124 0.9483 0.9673 0.9577 0.9896
0.0251 37.0 3552 0.0347 0.9417 0.9741 0.9576 116 0.9551 0.9430 0.9490 158 0.9762 0.9919 0.9840 124 0.9577 0.9673 0.9625 0.9901
0.0253 38.0 3648 0.0353 0.9328 0.9569 0.9447 116 0.9367 0.9367 0.9367 158 0.9762 0.9919 0.9840 124 0.9479 0.9598 0.9538 0.9887
0.0248 39.0 3744 0.0338 0.9167 0.9483 0.9322 116 0.9313 0.9430 0.9371 158 0.9685 0.9919 0.9801 124 0.9386 0.9598 0.9491 0.9893
0.0222 40.0 3840 0.0334 0.9407 0.9569 0.9487 116 0.9437 0.9557 0.9497 158 0.9762 0.9919 0.9840 124 0.9530 0.9673 0.9601 0.9896
0.0226 41.0 3936 0.0345 0.9492 0.9655 0.9573 116 0.9255 0.9430 0.9342 158 0.9762 0.9919 0.9840 124 0.9481 0.9648 0.9564 0.9898
0.0208 42.0 4032 0.0345 0.9412 0.9655 0.9532 116 0.9551 0.9430 0.9490 158 0.9762 0.9919 0.9840 124 0.9576 0.9648 0.9612 0.9898
0.0227 43.0 4128 0.0355 0.9483 0.9483 0.9483 116 0.9487 0.9367 0.9427 158 0.9762 0.9919 0.9840 124 0.9573 0.9573 0.9573 0.9887
0.0222 44.0 4224 0.0370 0.9412 0.9655 0.9532 116 0.9367 0.9367 0.9367 158 0.9762 0.9919 0.9840 124 0.9504 0.9623 0.9563 0.9893
0.0197 45.0 4320 0.0362 0.9412 0.9655 0.9532 116 0.9545 0.9304 0.9423 158 0.9762 0.9919 0.9840 124 0.9574 0.9598 0.9586 0.9896
0.0189 46.0 4416 0.0375 0.9333 0.9655 0.9492 116 0.9308 0.9367 0.9338 158 0.9762 0.9919 0.9840 124 0.9457 0.9623 0.9539 0.9890
0.02 47.0 4512 0.0363 0.9412 0.9655 0.9532 116 0.9255 0.9430 0.9342 158 0.9762 0.9919 0.9840 124 0.9458 0.9648 0.9552 0.9893
0.0178 48.0 4608 0.0369 0.9492 0.9655 0.9573 116 0.9548 0.9367 0.9457 158 0.9762 0.9919 0.9840 124 0.9599 0.9623 0.9611 0.9893
0.02 49.0 4704 0.0357 0.9412 0.9655 0.9532 116 0.9548 0.9367 0.9457 158 0.9762 0.9919 0.9840 124 0.9575 0.9623 0.9599 0.9896
0.0178 50.0 4800 0.0368 0.9492 0.9655 0.9573 116 0.9673 0.9367 0.9518 158 0.9762 0.9919 0.9840 124 0.9647 0.9623 0.9635 0.9893
0.0192 51.0 4896 0.0337 0.9412 0.9655 0.9532 116 0.9430 0.9430 0.9430 158 0.9762 0.9919 0.9840 124 0.9529 0.9648 0.9588 0.9898
0.0173 52.0 4992 0.0352 0.9492 0.9655 0.9573 116 0.9615 0.9494 0.9554 158 0.9762 0.9919 0.9840 124 0.9625 0.9673 0.9649 0.9904
0.0169 53.0 5088 0.0353 0.9492 0.9655 0.9573 116 0.9434 0.9494 0.9464 158 0.9762 0.9919 0.9840 124 0.9553 0.9673 0.9613 0.9890
0.0153 54.0 5184 0.0351 0.9573 0.9655 0.9614 116 0.9618 0.9557 0.9587 158 0.9762 0.9919 0.9840 124 0.965 0.9698 0.9674 0.9898
0.0145 55.0 5280 0.0349 0.9492 0.9655 0.9573 116 0.9613 0.9430 0.9521 158 0.9762 0.9919 0.9840 124 0.9624 0.9648 0.9636 0.9898
0.0155 56.0 5376 0.0360 0.9417 0.9741 0.9576 116 0.9490 0.9430 0.9460 158 0.9762 0.9919 0.9840 124 0.9553 0.9673 0.9613 0.9901
0.016 57.0 5472 0.0376 0.9573 0.9655 0.9614 116 0.9613 0.9430 0.9521 158 0.9762 0.9919 0.9840 124 0.9648 0.9648 0.9648 0.9898
0.0143 58.0 5568 0.0389 0.9412 0.9655 0.9532 116 0.9671 0.9304 0.9484 158 0.9762 0.9919 0.9840 124 0.9622 0.9598 0.9610 0.9893
0.0156 59.0 5664 0.0370 0.9333 0.9655 0.9492 116 0.9427 0.9367 0.9397 158 0.9762 0.9919 0.9840 124 0.9504 0.9623 0.9563 0.9901
0.0152 60.0 5760 0.0367 0.9412 0.9655 0.9532 116 0.9545 0.9304 0.9423 158 0.9762 0.9919 0.9840 124 0.9574 0.9598 0.9586 0.9896
0.0144 61.0 5856 0.0407 0.9333 0.9655 0.9492 116 0.9545 0.9304 0.9423 158 0.9762 0.9919 0.9840 124 0.955 0.9598 0.9574 0.9893
0.0127 62.0 5952 0.0389 0.9407 0.9569 0.9487 116 0.9545 0.9304 0.9423 158 0.9762 0.9919 0.9840 124 0.9573 0.9573 0.9573 0.9890
0.0149 63.0 6048 0.0402 0.9328 0.9569 0.9447 116 0.9304 0.9304 0.9304 158 0.9762 0.9919 0.9840 124 0.9454 0.9573 0.9513 0.9879
0.0119 64.0 6144 0.0412 0.9316 0.9397 0.9356 116 0.9545 0.9304 0.9423 158 0.9685 0.9919 0.9801 124 0.9523 0.9523 0.9523 0.9887
0.0117 65.0 6240 0.0380 0.9407 0.9569 0.9487 116 0.9542 0.9241 0.9389 158 0.9762 0.9919 0.9840 124 0.9572 0.9548 0.9560 0.9887
0.013 66.0 6336 0.0384 0.9402 0.9483 0.9442 116 0.9542 0.9241 0.9389 158 0.9762 0.9919 0.9840 124 0.9571 0.9523 0.9547 0.9885
0.012 67.0 6432 0.0413 0.9492 0.9655 0.9573 116 0.9735 0.9304 0.9515 158 0.9762 0.9919 0.9840 124 0.9671 0.9598 0.9634 0.9893
0.0112 68.0 6528 0.0399 0.9492 0.9655 0.9573 116 0.9548 0.9367 0.9457 158 0.9762 0.9919 0.9840 124 0.9599 0.9623 0.9611 0.9896
0.0129 69.0 6624 0.0367 0.9652 0.9569 0.9610 116 0.9490 0.9430 0.9460 158 0.9762 0.9919 0.9840 124 0.9623 0.9623 0.9623 0.9898
0.0115 70.0 6720 0.0381 0.9333 0.9655 0.9492 116 0.9427 0.9367 0.9397 158 0.9762 0.9919 0.9840 124 0.9504 0.9623 0.9563 0.9890
0.0119 71.0 6816 0.0381 0.9412 0.9655 0.9532 116 0.9608 0.9304 0.9453 158 0.9762 0.9919 0.9840 124 0.9598 0.9598 0.9598 0.9890
0.0127 72.0 6912 0.0418 0.9492 0.9655 0.9573 116 0.9545 0.9304 0.9423 158 0.9762 0.9919 0.9840 124 0.9598 0.9598 0.9598 0.9890
0.011 73.0 7008 0.0408 0.9412 0.9655 0.9532 116 0.9487 0.9367 0.9427 158 0.9762 0.9919 0.9840 124 0.9551 0.9623 0.9587 0.9890
0.0121 74.0 7104 0.0426 0.9333 0.9655 0.9492 116 0.9545 0.9304 0.9423 158 0.9762 0.9919 0.9840 124 0.955 0.9598 0.9574 0.9890
0.0122 75.0 7200 0.0391 0.9412 0.9655 0.9532 116 0.9484 0.9304 0.9393 158 0.9762 0.9919 0.9840 124 0.955 0.9598 0.9574 0.9893
0.0108 76.0 7296 0.0401 0.9412 0.9655 0.9532 116 0.9487 0.9367 0.9427 158 0.9762 0.9919 0.9840 124 0.9551 0.9623 0.9587 0.9890
0.0103 77.0 7392 0.0402 0.9412 0.9655 0.9532 116 0.9545 0.9304 0.9423 158 0.9762 0.9919 0.9840 124 0.9574 0.9598 0.9586 0.9887
0.0105 78.0 7488 0.0404 0.9417 0.9741 0.9576 116 0.9548 0.9367 0.9457 158 0.9762 0.9919 0.9840 124 0.9576 0.9648 0.9612 0.9896
0.0106 79.0 7584 0.0419 0.9417 0.9741 0.9576 116 0.9671 0.9304 0.9484 158 0.9762 0.9919 0.9840 124 0.9623 0.9623 0.9623 0.9896
0.0111 80.0 7680 0.0401 0.9492 0.9655 0.9573 116 0.9490 0.9430 0.9460 158 0.9762 0.9919 0.9840 124 0.9576 0.9648 0.9612 0.9893
0.0109 81.0 7776 0.0395 0.9492 0.9655 0.9573 116 0.9313 0.9430 0.9371 158 0.9762 0.9919 0.9840 124 0.9505 0.9648 0.9576 0.9896
0.0093 82.0 7872 0.0401 0.9333 0.9655 0.9492 116 0.9487 0.9367 0.9427 158 0.9762 0.9919 0.9840 124 0.9527 0.9623 0.9575 0.9898
0.0097 83.0 7968 0.0397 0.9412 0.9655 0.9532 116 0.9430 0.9430 0.9430 158 0.9762 0.9919 0.9840 124 0.9529 0.9648 0.9588 0.9901
0.0099 84.0 8064 0.0411 0.9417 0.9741 0.9576 116 0.9487 0.9367 0.9427 158 0.9762 0.9919 0.9840 124 0.9552 0.9648 0.96 0.9898
0.0109 85.0 8160 0.0399 0.9492 0.9655 0.9573 116 0.9371 0.9430 0.9401 158 0.9762 0.9919 0.9840 124 0.9529 0.9648 0.9588 0.9898
0.0086 86.0 8256 0.0415 0.9333 0.9655 0.9492 116 0.9484 0.9304 0.9393 158 0.9762 0.9919 0.9840 124 0.9526 0.9598 0.9562 0.9890
0.0099 87.0 8352 0.0413 0.9333 0.9655 0.9492 116 0.9308 0.9367 0.9338 158 0.9762 0.9919 0.9840 124 0.9457 0.9623 0.9539 0.9896
0.0096 88.0 8448 0.0412 0.9487 0.9569 0.9528 116 0.925 0.9367 0.9308 158 0.9762 0.9919 0.9840 124 0.9479 0.9598 0.9538 0.9893
0.0092 89.0 8544 0.0424 0.9417 0.9741 0.9576 116 0.9548 0.9367 0.9457 158 0.9762 0.9919 0.9840 124 0.9576 0.9648 0.9612 0.9896
0.0095 90.0 8640 0.0422 0.9412 0.9655 0.9532 116 0.9484 0.9304 0.9393 158 0.9762 0.9919 0.9840 124 0.955 0.9598 0.9574 0.9893
0.0097 91.0 8736 0.0420 0.9333 0.9655 0.9492 116 0.9608 0.9304 0.9453 158 0.9762 0.9919 0.9840 124 0.9574 0.9598 0.9586 0.9893
0.0089 92.0 8832 0.0410 0.9407 0.9569 0.9487 116 0.9423 0.9304 0.9363 158 0.9762 0.9919 0.9840 124 0.9525 0.9573 0.9549 0.9887
0.009 93.0 8928 0.0400 0.9333 0.9655 0.9492 116 0.9487 0.9367 0.9427 158 0.9762 0.9919 0.9840 124 0.9527 0.9623 0.9575 0.9893
0.0087 94.0 9024 0.0399 0.9407 0.9569 0.9487 116 0.9363 0.9304 0.9333 158 0.9762 0.9919 0.9840 124 0.9501 0.9573 0.9537 0.9890
0.0104 95.0 9120 0.0406 0.9333 0.9655 0.9492 116 0.9487 0.9367 0.9427 158 0.9762 0.9919 0.9840 124 0.9527 0.9623 0.9575 0.9893
0.0096 96.0 9216 0.0407 0.9417 0.9741 0.9576 116 0.9548 0.9367 0.9457 158 0.9762 0.9919 0.9840 124 0.9576 0.9648 0.9612 0.9896
0.009 97.0 9312 0.0406 0.9412 0.9655 0.9532 116 0.9487 0.9367 0.9427 158 0.9762 0.9919 0.9840 124 0.9551 0.9623 0.9587 0.9890
0.0077 98.0 9408 0.0411 0.9417 0.9741 0.9576 116 0.9548 0.9367 0.9457 158 0.9762 0.9919 0.9840 124 0.9576 0.9648 0.9612 0.9896
0.0089 99.0 9504 0.0410 0.9417 0.9741 0.9576 116 0.9545 0.9304 0.9423 158 0.9762 0.9919 0.9840 124 0.9575 0.9623 0.9599 0.9893
0.0088 100.0 9600 0.0410 0.9417 0.9741 0.9576 116 0.9548 0.9367 0.9457 158 0.9762 0.9919 0.9840 124 0.9576 0.9648 0.9612 0.9896

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for apwic/nerui-seq_bn-1

Finetuned
(367)
this model