Edit model card

nerui-seq_bn-rf64-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0421
  • Location Precision: 0.9091
  • Location Recall: 0.9574
  • Location F1: 0.9326
  • Location Number: 94
  • Organization Precision: 0.9042
  • Organization Recall: 0.9042
  • Organization F1: 0.9042
  • Organization Number: 167
  • Person Precision: 0.9853
  • Person Recall: 0.9781
  • Person F1: 0.9817
  • Person Number: 137
  • Overall Precision: 0.9328
  • Overall Recall: 0.9422
  • Overall F1: 0.9375
  • Overall Accuracy: 0.9856

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Location Precision Location Recall Location F1 Location Number Organization Precision Organization Recall Organization F1 Organization Number Person Precision Person Recall Person F1 Person Number Overall Precision Overall Recall Overall F1 Overall Accuracy
1.0601 1.0 96 0.6564 0.0 0.0 0.0 94 0.0 0.0 0.0 167 0.0 0.0 0.0 137 0.0 0.0 0.0 0.8343
0.5969 2.0 192 0.4559 0.0 0.0 0.0 94 0.3571 0.0599 0.1026 167 0.3542 0.1241 0.1838 137 0.3506 0.0678 0.1137 0.8453
0.4292 3.0 288 0.3352 0.3871 0.1277 0.192 94 0.3830 0.4311 0.4056 167 0.3350 0.5036 0.4023 137 0.36 0.3844 0.3718 0.8914
0.3453 4.0 384 0.2879 0.4062 0.2766 0.3291 94 0.4267 0.5749 0.4898 167 0.4271 0.6204 0.5060 137 0.4242 0.5201 0.4673 0.9124
0.2994 5.0 480 0.2501 0.4578 0.4043 0.4294 94 0.4843 0.6467 0.5538 167 0.5 0.7007 0.5836 137 0.4859 0.6080 0.5402 0.9290
0.2653 6.0 576 0.2132 0.5465 0.5 0.5222 94 0.5333 0.7186 0.6122 167 0.6570 0.8248 0.7314 137 0.5797 0.7035 0.6356 0.9423
0.2223 7.0 672 0.1735 0.5833 0.5957 0.5895 94 0.6212 0.7365 0.6740 167 0.7922 0.8905 0.8385 137 0.6719 0.7563 0.7116 0.9541
0.1861 8.0 768 0.1423 0.6667 0.7021 0.6839 94 0.6809 0.7665 0.7211 167 0.8105 0.9051 0.8552 137 0.7227 0.7990 0.7589 0.9599
0.1623 9.0 864 0.1244 0.7358 0.8298 0.78 94 0.7211 0.8204 0.7675 167 0.8658 0.9416 0.9021 137 0.7730 0.8643 0.8161 0.9652
0.1406 10.0 960 0.1061 0.7714 0.8617 0.8141 94 0.7556 0.8144 0.7839 167 0.9041 0.9635 0.9329 137 0.8097 0.8769 0.8420 0.9702
0.1277 11.0 1056 0.0965 0.82 0.8723 0.8454 94 0.7816 0.8144 0.7977 167 0.9041 0.9635 0.9329 137 0.8333 0.8794 0.8557 0.9735
0.1217 12.0 1152 0.0922 0.7778 0.8936 0.8317 94 0.7650 0.8383 0.8000 167 0.9172 0.9708 0.9433 137 0.8188 0.8970 0.8561 0.9691
0.1126 13.0 1248 0.0824 0.84 0.8936 0.8660 94 0.8343 0.8443 0.8393 167 0.9568 0.9708 0.9638 137 0.8775 0.8995 0.8883 0.9768
0.1064 14.0 1344 0.0791 0.8155 0.8936 0.8528 94 0.7989 0.8563 0.8266 167 0.9366 0.9708 0.9534 137 0.8491 0.9045 0.8759 0.9738
0.1032 15.0 1440 0.0750 0.8515 0.9149 0.8821 94 0.8192 0.8683 0.8430 167 0.9640 0.9781 0.9710 137 0.8753 0.9171 0.8957 0.9771
0.1016 16.0 1536 0.0726 0.8155 0.8936 0.8528 94 0.8305 0.8802 0.8547 167 0.95 0.9708 0.9603 137 0.8667 0.9146 0.8900 0.9768
0.0945 17.0 1632 0.0692 0.8416 0.9043 0.8718 94 0.8266 0.8563 0.8412 167 0.9710 0.9781 0.9745 137 0.8786 0.9095 0.8938 0.9773
0.0924 18.0 1728 0.0676 0.8416 0.9043 0.8718 94 0.8266 0.8563 0.8412 167 0.9710 0.9781 0.9745 137 0.8786 0.9095 0.8938 0.9771
0.0839 19.0 1824 0.0649 0.8416 0.9043 0.8718 94 0.8430 0.8683 0.8555 167 0.9710 0.9781 0.9745 137 0.8856 0.9146 0.8999 0.9782
0.0862 20.0 1920 0.0633 0.8485 0.8936 0.8705 94 0.8324 0.8623 0.8471 167 0.9640 0.9781 0.9710 137 0.8808 0.9095 0.8949 0.9773
0.0828 21.0 2016 0.0632 0.8269 0.9149 0.8687 94 0.8324 0.8623 0.8471 167 0.9640 0.9781 0.9710 137 0.875 0.9146 0.8943 0.9765
0.0812 22.0 2112 0.0592 0.8673 0.9043 0.8854 94 0.8497 0.8802 0.8647 167 0.9710 0.9781 0.9745 137 0.8949 0.9196 0.9071 0.9790
0.0782 23.0 2208 0.0589 0.8614 0.9255 0.8923 94 0.8480 0.8683 0.8580 167 0.9640 0.9781 0.9710 137 0.8905 0.9196 0.9048 0.9787
0.0737 24.0 2304 0.0571 0.8687 0.9149 0.8912 94 0.8596 0.8802 0.8698 167 0.9710 0.9781 0.9745 137 0.8995 0.9221 0.9107 0.9801
0.0752 25.0 2400 0.0570 0.8627 0.9362 0.8980 94 0.8631 0.8683 0.8657 167 0.9710 0.9781 0.9745 137 0.8995 0.9221 0.9107 0.9796
0.069 26.0 2496 0.0556 0.88 0.9362 0.9072 94 0.8596 0.8802 0.8698 167 0.9710 0.9781 0.9745 137 0.9022 0.9271 0.9145 0.9804
0.0717 27.0 2592 0.0538 0.87 0.9255 0.8969 94 0.8448 0.8802 0.8622 167 0.9710 0.9781 0.9745 137 0.8932 0.9246 0.9086 0.9809
0.0688 28.0 2688 0.0533 0.8788 0.9255 0.9016 94 0.8588 0.8743 0.8665 167 0.9710 0.9781 0.9745 137 0.9017 0.9221 0.9118 0.9818
0.0652 29.0 2784 0.0519 0.8889 0.9362 0.9119 94 0.8448 0.8802 0.8622 167 0.9710 0.9781 0.9745 137 0.8978 0.9271 0.9122 0.9812
0.0668 30.0 2880 0.0529 0.8614 0.9255 0.8923 94 0.8343 0.8743 0.8538 167 0.9640 0.9781 0.9710 137 0.8843 0.9221 0.9028 0.9801
0.0642 31.0 2976 0.0498 0.89 0.9468 0.9175 94 0.8538 0.8743 0.8639 167 0.9781 0.9781 0.9781 137 0.9044 0.9271 0.9156 0.9820
0.0627 32.0 3072 0.0509 0.8911 0.9574 0.9231 94 0.875 0.8802 0.8776 167 0.9781 0.9781 0.9781 137 0.9138 0.9322 0.9229 0.9829
0.0603 33.0 3168 0.0510 0.8713 0.9362 0.9026 94 0.8480 0.8683 0.8580 167 0.9710 0.9781 0.9745 137 0.8951 0.9221 0.9084 0.9809
0.0593 34.0 3264 0.0474 0.8889 0.9362 0.9119 94 0.8869 0.8922 0.8896 167 0.9853 0.9781 0.9817 137 0.9206 0.9322 0.9263 0.9834
0.0603 35.0 3360 0.0474 0.88 0.9362 0.9072 94 0.8621 0.8982 0.8798 167 0.9781 0.9781 0.9781 137 0.9051 0.9347 0.9197 0.9829
0.0583 36.0 3456 0.0490 0.8713 0.9362 0.9026 94 0.8605 0.8862 0.8732 167 0.9781 0.9781 0.9781 137 0.9024 0.9296 0.9158 0.9818
0.0557 37.0 3552 0.0478 0.8889 0.9362 0.9119 94 0.8675 0.8623 0.8649 167 0.9853 0.9781 0.9817 137 0.9127 0.9196 0.9161 0.9823
0.0587 38.0 3648 0.0472 0.8788 0.9255 0.9016 94 0.8655 0.8862 0.8757 167 0.9781 0.9781 0.9781 137 0.9066 0.9271 0.9168 0.9826
0.0576 39.0 3744 0.0477 0.8614 0.9255 0.8923 94 0.8667 0.8563 0.8614 167 0.9853 0.9781 0.9817 137 0.9055 0.9146 0.91 0.9818
0.0567 40.0 3840 0.0474 0.8713 0.9362 0.9026 94 0.8916 0.8862 0.8889 167 0.9781 0.9781 0.9781 137 0.9158 0.9296 0.9227 0.9831
0.0544 41.0 3936 0.0483 0.8627 0.9362 0.8980 94 0.8862 0.8862 0.8862 167 0.9781 0.9781 0.9781 137 0.9113 0.9296 0.9204 0.9826
0.0532 42.0 4032 0.0461 0.8990 0.9468 0.9223 94 0.8909 0.8802 0.8855 167 0.9853 0.9781 0.9817 137 0.925 0.9296 0.9273 0.9831
0.053 43.0 4128 0.0468 0.8812 0.9468 0.9128 94 0.8841 0.8683 0.8761 167 0.9853 0.9781 0.9817 137 0.9177 0.9246 0.9212 0.9831
0.0519 44.0 4224 0.0451 0.8889 0.9362 0.9119 94 0.8916 0.8862 0.8889 167 0.9853 0.9781 0.9817 137 0.9227 0.9296 0.9262 0.9837
0.0511 45.0 4320 0.0447 0.8889 0.9362 0.9119 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9254 0.9347 0.93 0.9837
0.0494 46.0 4416 0.0461 0.88 0.9362 0.9072 94 0.8902 0.8743 0.8822 167 0.9853 0.9781 0.9817 137 0.92 0.9246 0.9223 0.9826
0.0486 47.0 4512 0.0458 0.88 0.9362 0.9072 94 0.8802 0.8802 0.8802 167 0.9853 0.9781 0.9817 137 0.9156 0.9271 0.9213 0.9823
0.048 48.0 4608 0.0453 0.8980 0.9362 0.9167 94 0.8909 0.8802 0.8855 167 0.9853 0.9781 0.9817 137 0.9248 0.9271 0.9260 0.9834
0.0485 49.0 4704 0.0441 0.88 0.9362 0.9072 94 0.9157 0.9102 0.9129 167 0.9853 0.9781 0.9817 137 0.9303 0.9397 0.9350 0.9848
0.0478 50.0 4800 0.0444 0.8889 0.9362 0.9119 94 0.8922 0.8922 0.8922 167 0.9853 0.9781 0.9817 137 0.9229 0.9322 0.9275 0.9845
0.0466 51.0 4896 0.0454 0.8990 0.9468 0.9223 94 0.8970 0.8862 0.8916 167 0.9853 0.9781 0.9817 137 0.9275 0.9322 0.9298 0.9837
0.0468 52.0 4992 0.0441 0.89 0.9468 0.9175 94 0.8976 0.8922 0.8949 167 0.9853 0.9781 0.9817 137 0.9254 0.9347 0.93 0.9843
0.0459 53.0 5088 0.0442 0.8980 0.9362 0.9167 94 0.8976 0.8922 0.8949 167 0.9853 0.9781 0.9817 137 0.9275 0.9322 0.9298 0.9837
0.0465 54.0 5184 0.0441 0.8980 0.9362 0.9167 94 0.9024 0.8862 0.8943 167 0.9853 0.9781 0.9817 137 0.9296 0.9296 0.9296 0.9843
0.0453 55.0 5280 0.0427 0.8980 0.9362 0.9167 94 0.8988 0.9042 0.9015 167 0.9853 0.9781 0.9817 137 0.9279 0.9372 0.9325 0.9851
0.0432 56.0 5376 0.0438 0.8980 0.9362 0.9167 94 0.8916 0.8862 0.8889 167 0.9853 0.9781 0.9817 137 0.925 0.9296 0.9273 0.9845
0.0431 57.0 5472 0.0457 0.8627 0.9362 0.8980 94 0.9024 0.8862 0.8943 167 0.9853 0.9781 0.9817 137 0.9204 0.9296 0.925 0.9837
0.0424 58.0 5568 0.0439 0.8980 0.9362 0.9167 94 0.8976 0.8922 0.8949 167 0.9853 0.9781 0.9817 137 0.9275 0.9322 0.9298 0.9845
0.0434 59.0 5664 0.0441 0.8980 0.9362 0.9167 94 0.8909 0.8802 0.8855 167 0.9853 0.9781 0.9817 137 0.9248 0.9271 0.9260 0.9840
0.0429 60.0 5760 0.0444 0.9082 0.9468 0.9271 94 0.9091 0.8982 0.9036 167 0.9853 0.9781 0.9817 137 0.9348 0.9372 0.9360 0.9851
0.0421 61.0 5856 0.0442 0.8990 0.9468 0.9223 94 0.9172 0.9281 0.9226 167 0.9781 0.9781 0.9781 137 0.9333 0.9497 0.9415 0.9856
0.0414 62.0 5952 0.0435 0.8990 0.9468 0.9223 94 0.9096 0.9042 0.9069 167 0.9853 0.9781 0.9817 137 0.9327 0.9397 0.9362 0.9848
0.0425 63.0 6048 0.0432 0.8980 0.9362 0.9167 94 0.8976 0.8922 0.8949 167 0.9853 0.9781 0.9817 137 0.9275 0.9322 0.9298 0.9843
0.0412 64.0 6144 0.0451 0.89 0.9468 0.9175 94 0.8889 0.8623 0.8754 167 0.9853 0.9781 0.9817 137 0.9221 0.9221 0.9221 0.9834
0.0422 65.0 6240 0.0423 0.9082 0.9468 0.9271 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9302 0.9372 0.9337 0.9851
0.0409 66.0 6336 0.0439 0.8980 0.9362 0.9167 94 0.8916 0.8862 0.8889 167 0.9853 0.9781 0.9817 137 0.925 0.9296 0.9273 0.9843
0.0379 67.0 6432 0.0446 0.8980 0.9362 0.9167 94 0.8902 0.8743 0.8822 167 0.9853 0.9781 0.9817 137 0.9246 0.9246 0.9246 0.9840
0.0383 68.0 6528 0.0438 0.8980 0.9362 0.9167 94 0.8869 0.8922 0.8896 167 0.9853 0.9781 0.9817 137 0.9229 0.9322 0.9275 0.9843
0.0404 69.0 6624 0.0437 0.9082 0.9468 0.9271 94 0.8869 0.8922 0.8896 167 0.9853 0.9781 0.9817 137 0.9254 0.9347 0.93 0.9848
0.0392 70.0 6720 0.0427 0.8980 0.9362 0.9167 94 0.9042 0.9042 0.9042 167 0.9853 0.9781 0.9817 137 0.9302 0.9372 0.9337 0.9851
0.0389 71.0 6816 0.0423 0.8990 0.9468 0.9223 94 0.9042 0.9042 0.9042 167 0.9853 0.9781 0.9817 137 0.9303 0.9397 0.9350 0.9848
0.0401 72.0 6912 0.0426 0.8990 0.9468 0.9223 94 0.9042 0.9042 0.9042 167 0.9853 0.9781 0.9817 137 0.9303 0.9397 0.9350 0.9848
0.0376 73.0 7008 0.0422 0.8980 0.9362 0.9167 94 0.9048 0.9102 0.9075 167 0.9853 0.9781 0.9817 137 0.9303 0.9397 0.9350 0.9854
0.0364 74.0 7104 0.0427 0.8990 0.9468 0.9223 94 0.9096 0.9042 0.9069 167 0.9853 0.9781 0.9817 137 0.9327 0.9397 0.9362 0.9854
0.0389 75.0 7200 0.0432 0.8990 0.9468 0.9223 94 0.9102 0.9102 0.9102 167 0.9853 0.9781 0.9817 137 0.9328 0.9422 0.9375 0.9851
0.0384 76.0 7296 0.0427 0.8889 0.9362 0.9119 94 0.9152 0.9042 0.9096 167 0.9853 0.9781 0.9817 137 0.9325 0.9372 0.9348 0.9845
0.0384 77.0 7392 0.0434 0.8990 0.9468 0.9223 94 0.9048 0.9102 0.9075 167 0.9853 0.9781 0.9817 137 0.9305 0.9422 0.9363 0.9854
0.0368 78.0 7488 0.0428 0.8990 0.9468 0.9223 94 0.8988 0.9042 0.9015 167 0.9853 0.9781 0.9817 137 0.9280 0.9397 0.9338 0.9851
0.0374 79.0 7584 0.0429 0.9082 0.9468 0.9271 94 0.9091 0.8982 0.9036 167 0.9853 0.9781 0.9817 137 0.9348 0.9372 0.9360 0.9848
0.0371 80.0 7680 0.0423 0.89 0.9468 0.9175 94 0.9162 0.9162 0.9162 167 0.9853 0.9781 0.9817 137 0.9330 0.9447 0.9388 0.9856
0.0359 81.0 7776 0.0418 0.9082 0.9468 0.9271 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9302 0.9372 0.9337 0.9854
0.0357 82.0 7872 0.0429 0.9091 0.9574 0.9326 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9303 0.9397 0.9350 0.9851
0.0354 83.0 7968 0.0426 0.9091 0.9574 0.9326 94 0.9096 0.9042 0.9069 167 0.9853 0.9781 0.9817 137 0.9352 0.9422 0.9387 0.9854
0.0354 84.0 8064 0.0419 0.9091 0.9574 0.9326 94 0.9096 0.9042 0.9069 167 0.9853 0.9781 0.9817 137 0.9352 0.9422 0.9387 0.9854
0.0358 85.0 8160 0.0425 0.9091 0.9574 0.9326 94 0.8976 0.8922 0.8949 167 0.9853 0.9781 0.9817 137 0.9302 0.9372 0.9337 0.9848
0.0384 86.0 8256 0.0423 0.9091 0.9574 0.9326 94 0.8922 0.8922 0.8922 167 0.9853 0.9781 0.9817 137 0.9279 0.9372 0.9325 0.9848
0.0354 87.0 8352 0.0422 0.9091 0.9574 0.9326 94 0.9096 0.9042 0.9069 167 0.9853 0.9781 0.9817 137 0.9352 0.9422 0.9387 0.9854
0.036 88.0 8448 0.0415 0.9082 0.9468 0.9271 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9302 0.9372 0.9337 0.9851
0.0354 89.0 8544 0.0419 0.9 0.9574 0.9278 94 0.9048 0.9102 0.9075 167 0.9853 0.9781 0.9817 137 0.9307 0.9447 0.9377 0.9856
0.0348 90.0 8640 0.0423 0.9091 0.9574 0.9326 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9303 0.9397 0.9350 0.9851
0.0355 91.0 8736 0.0427 0.9091 0.9574 0.9326 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9303 0.9397 0.9350 0.9851
0.0359 92.0 8832 0.0427 0.9091 0.9574 0.9326 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9303 0.9397 0.9350 0.9851
0.0366 93.0 8928 0.0423 0.9091 0.9574 0.9326 94 0.9042 0.9042 0.9042 167 0.9853 0.9781 0.9817 137 0.9328 0.9422 0.9375 0.9856
0.0328 94.0 9024 0.0421 0.9091 0.9574 0.9326 94 0.9096 0.9042 0.9069 167 0.9853 0.9781 0.9817 137 0.9352 0.9422 0.9387 0.9859
0.0332 95.0 9120 0.0422 0.9091 0.9574 0.9326 94 0.9096 0.9042 0.9069 167 0.9853 0.9781 0.9817 137 0.9352 0.9422 0.9387 0.9854
0.0354 96.0 9216 0.0420 0.9082 0.9468 0.9271 94 0.8982 0.8982 0.8982 167 0.9853 0.9781 0.9817 137 0.9302 0.9372 0.9337 0.9854
0.0361 97.0 9312 0.0423 0.9091 0.9574 0.9326 94 0.9152 0.9042 0.9096 167 0.9853 0.9781 0.9817 137 0.9375 0.9422 0.9398 0.9856
0.0349 98.0 9408 0.0421 0.9091 0.9574 0.9326 94 0.9042 0.9042 0.9042 167 0.9853 0.9781 0.9817 137 0.9328 0.9422 0.9375 0.9856
0.0355 99.0 9504 0.0420 0.9091 0.9574 0.9326 94 0.9042 0.9042 0.9042 167 0.9853 0.9781 0.9817 137 0.9328 0.9422 0.9375 0.9856
0.035 100.0 9600 0.0421 0.9091 0.9574 0.9326 94 0.9042 0.9042 0.9042 167 0.9853 0.9781 0.9817 137 0.9328 0.9422 0.9375 0.9856

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for apwic/nerui-seq_bn-rf64-0

Finetuned
(367)
this model