Model save
Browse files- README.md +172 -0
- adapter-ner/adapter_config.json +42 -0
- adapter-ner/head_config.json +19 -0
- adapter-ner/pytorch_adapter.bin +3 -0
- adapter-ner/pytorch_model_head.bin +3 -0
README.md
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: indolem/indobert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: nerui-seq_bn-rf64-0
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# nerui-seq_bn-rf64-0
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0421
|
19 |
+
- Location Precision: 0.9091
|
20 |
+
- Location Recall: 0.9574
|
21 |
+
- Location F1: 0.9326
|
22 |
+
- Location Number: 94
|
23 |
+
- Organization Precision: 0.9042
|
24 |
+
- Organization Recall: 0.9042
|
25 |
+
- Organization F1: 0.9042
|
26 |
+
- Organization Number: 167
|
27 |
+
- Person Precision: 0.9853
|
28 |
+
- Person Recall: 0.9781
|
29 |
+
- Person F1: 0.9817
|
30 |
+
- Person Number: 137
|
31 |
+
- Overall Precision: 0.9328
|
32 |
+
- Overall Recall: 0.9422
|
33 |
+
- Overall F1: 0.9375
|
34 |
+
- Overall Accuracy: 0.9856
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 5e-05
|
54 |
+
- train_batch_size: 16
|
55 |
+
- eval_batch_size: 64
|
56 |
+
- seed: 42
|
57 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
+
- lr_scheduler_type: linear
|
59 |
+
- num_epochs: 100.0
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
65 |
+
| 1.0601 | 1.0 | 96 | 0.6564 | 0.0 | 0.0 | 0.0 | 94 | 0.0 | 0.0 | 0.0 | 167 | 0.0 | 0.0 | 0.0 | 137 | 0.0 | 0.0 | 0.0 | 0.8343 |
|
66 |
+
| 0.5969 | 2.0 | 192 | 0.4559 | 0.0 | 0.0 | 0.0 | 94 | 0.3571 | 0.0599 | 0.1026 | 167 | 0.3542 | 0.1241 | 0.1838 | 137 | 0.3506 | 0.0678 | 0.1137 | 0.8453 |
|
67 |
+
| 0.4292 | 3.0 | 288 | 0.3352 | 0.3871 | 0.1277 | 0.192 | 94 | 0.3830 | 0.4311 | 0.4056 | 167 | 0.3350 | 0.5036 | 0.4023 | 137 | 0.36 | 0.3844 | 0.3718 | 0.8914 |
|
68 |
+
| 0.3453 | 4.0 | 384 | 0.2879 | 0.4062 | 0.2766 | 0.3291 | 94 | 0.4267 | 0.5749 | 0.4898 | 167 | 0.4271 | 0.6204 | 0.5060 | 137 | 0.4242 | 0.5201 | 0.4673 | 0.9124 |
|
69 |
+
| 0.2994 | 5.0 | 480 | 0.2501 | 0.4578 | 0.4043 | 0.4294 | 94 | 0.4843 | 0.6467 | 0.5538 | 167 | 0.5 | 0.7007 | 0.5836 | 137 | 0.4859 | 0.6080 | 0.5402 | 0.9290 |
|
70 |
+
| 0.2653 | 6.0 | 576 | 0.2132 | 0.5465 | 0.5 | 0.5222 | 94 | 0.5333 | 0.7186 | 0.6122 | 167 | 0.6570 | 0.8248 | 0.7314 | 137 | 0.5797 | 0.7035 | 0.6356 | 0.9423 |
|
71 |
+
| 0.2223 | 7.0 | 672 | 0.1735 | 0.5833 | 0.5957 | 0.5895 | 94 | 0.6212 | 0.7365 | 0.6740 | 167 | 0.7922 | 0.8905 | 0.8385 | 137 | 0.6719 | 0.7563 | 0.7116 | 0.9541 |
|
72 |
+
| 0.1861 | 8.0 | 768 | 0.1423 | 0.6667 | 0.7021 | 0.6839 | 94 | 0.6809 | 0.7665 | 0.7211 | 167 | 0.8105 | 0.9051 | 0.8552 | 137 | 0.7227 | 0.7990 | 0.7589 | 0.9599 |
|
73 |
+
| 0.1623 | 9.0 | 864 | 0.1244 | 0.7358 | 0.8298 | 0.78 | 94 | 0.7211 | 0.8204 | 0.7675 | 167 | 0.8658 | 0.9416 | 0.9021 | 137 | 0.7730 | 0.8643 | 0.8161 | 0.9652 |
|
74 |
+
| 0.1406 | 10.0 | 960 | 0.1061 | 0.7714 | 0.8617 | 0.8141 | 94 | 0.7556 | 0.8144 | 0.7839 | 167 | 0.9041 | 0.9635 | 0.9329 | 137 | 0.8097 | 0.8769 | 0.8420 | 0.9702 |
|
75 |
+
| 0.1277 | 11.0 | 1056 | 0.0965 | 0.82 | 0.8723 | 0.8454 | 94 | 0.7816 | 0.8144 | 0.7977 | 167 | 0.9041 | 0.9635 | 0.9329 | 137 | 0.8333 | 0.8794 | 0.8557 | 0.9735 |
|
76 |
+
| 0.1217 | 12.0 | 1152 | 0.0922 | 0.7778 | 0.8936 | 0.8317 | 94 | 0.7650 | 0.8383 | 0.8000 | 167 | 0.9172 | 0.9708 | 0.9433 | 137 | 0.8188 | 0.8970 | 0.8561 | 0.9691 |
|
77 |
+
| 0.1126 | 13.0 | 1248 | 0.0824 | 0.84 | 0.8936 | 0.8660 | 94 | 0.8343 | 0.8443 | 0.8393 | 167 | 0.9568 | 0.9708 | 0.9638 | 137 | 0.8775 | 0.8995 | 0.8883 | 0.9768 |
|
78 |
+
| 0.1064 | 14.0 | 1344 | 0.0791 | 0.8155 | 0.8936 | 0.8528 | 94 | 0.7989 | 0.8563 | 0.8266 | 167 | 0.9366 | 0.9708 | 0.9534 | 137 | 0.8491 | 0.9045 | 0.8759 | 0.9738 |
|
79 |
+
| 0.1032 | 15.0 | 1440 | 0.0750 | 0.8515 | 0.9149 | 0.8821 | 94 | 0.8192 | 0.8683 | 0.8430 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.8753 | 0.9171 | 0.8957 | 0.9771 |
|
80 |
+
| 0.1016 | 16.0 | 1536 | 0.0726 | 0.8155 | 0.8936 | 0.8528 | 94 | 0.8305 | 0.8802 | 0.8547 | 167 | 0.95 | 0.9708 | 0.9603 | 137 | 0.8667 | 0.9146 | 0.8900 | 0.9768 |
|
81 |
+
| 0.0945 | 17.0 | 1632 | 0.0692 | 0.8416 | 0.9043 | 0.8718 | 94 | 0.8266 | 0.8563 | 0.8412 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8786 | 0.9095 | 0.8938 | 0.9773 |
|
82 |
+
| 0.0924 | 18.0 | 1728 | 0.0676 | 0.8416 | 0.9043 | 0.8718 | 94 | 0.8266 | 0.8563 | 0.8412 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8786 | 0.9095 | 0.8938 | 0.9771 |
|
83 |
+
| 0.0839 | 19.0 | 1824 | 0.0649 | 0.8416 | 0.9043 | 0.8718 | 94 | 0.8430 | 0.8683 | 0.8555 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8856 | 0.9146 | 0.8999 | 0.9782 |
|
84 |
+
| 0.0862 | 20.0 | 1920 | 0.0633 | 0.8485 | 0.8936 | 0.8705 | 94 | 0.8324 | 0.8623 | 0.8471 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.8808 | 0.9095 | 0.8949 | 0.9773 |
|
85 |
+
| 0.0828 | 21.0 | 2016 | 0.0632 | 0.8269 | 0.9149 | 0.8687 | 94 | 0.8324 | 0.8623 | 0.8471 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.875 | 0.9146 | 0.8943 | 0.9765 |
|
86 |
+
| 0.0812 | 22.0 | 2112 | 0.0592 | 0.8673 | 0.9043 | 0.8854 | 94 | 0.8497 | 0.8802 | 0.8647 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8949 | 0.9196 | 0.9071 | 0.9790 |
|
87 |
+
| 0.0782 | 23.0 | 2208 | 0.0589 | 0.8614 | 0.9255 | 0.8923 | 94 | 0.8480 | 0.8683 | 0.8580 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.8905 | 0.9196 | 0.9048 | 0.9787 |
|
88 |
+
| 0.0737 | 24.0 | 2304 | 0.0571 | 0.8687 | 0.9149 | 0.8912 | 94 | 0.8596 | 0.8802 | 0.8698 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8995 | 0.9221 | 0.9107 | 0.9801 |
|
89 |
+
| 0.0752 | 25.0 | 2400 | 0.0570 | 0.8627 | 0.9362 | 0.8980 | 94 | 0.8631 | 0.8683 | 0.8657 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8995 | 0.9221 | 0.9107 | 0.9796 |
|
90 |
+
| 0.069 | 26.0 | 2496 | 0.0556 | 0.88 | 0.9362 | 0.9072 | 94 | 0.8596 | 0.8802 | 0.8698 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.9022 | 0.9271 | 0.9145 | 0.9804 |
|
91 |
+
| 0.0717 | 27.0 | 2592 | 0.0538 | 0.87 | 0.9255 | 0.8969 | 94 | 0.8448 | 0.8802 | 0.8622 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8932 | 0.9246 | 0.9086 | 0.9809 |
|
92 |
+
| 0.0688 | 28.0 | 2688 | 0.0533 | 0.8788 | 0.9255 | 0.9016 | 94 | 0.8588 | 0.8743 | 0.8665 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.9017 | 0.9221 | 0.9118 | 0.9818 |
|
93 |
+
| 0.0652 | 29.0 | 2784 | 0.0519 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.8448 | 0.8802 | 0.8622 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8978 | 0.9271 | 0.9122 | 0.9812 |
|
94 |
+
| 0.0668 | 30.0 | 2880 | 0.0529 | 0.8614 | 0.9255 | 0.8923 | 94 | 0.8343 | 0.8743 | 0.8538 | 167 | 0.9640 | 0.9781 | 0.9710 | 137 | 0.8843 | 0.9221 | 0.9028 | 0.9801 |
|
95 |
+
| 0.0642 | 31.0 | 2976 | 0.0498 | 0.89 | 0.9468 | 0.9175 | 94 | 0.8538 | 0.8743 | 0.8639 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9044 | 0.9271 | 0.9156 | 0.9820 |
|
96 |
+
| 0.0627 | 32.0 | 3072 | 0.0509 | 0.8911 | 0.9574 | 0.9231 | 94 | 0.875 | 0.8802 | 0.8776 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9138 | 0.9322 | 0.9229 | 0.9829 |
|
97 |
+
| 0.0603 | 33.0 | 3168 | 0.0510 | 0.8713 | 0.9362 | 0.9026 | 94 | 0.8480 | 0.8683 | 0.8580 | 167 | 0.9710 | 0.9781 | 0.9745 | 137 | 0.8951 | 0.9221 | 0.9084 | 0.9809 |
|
98 |
+
| 0.0593 | 34.0 | 3264 | 0.0474 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.8869 | 0.8922 | 0.8896 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9206 | 0.9322 | 0.9263 | 0.9834 |
|
99 |
+
| 0.0603 | 35.0 | 3360 | 0.0474 | 0.88 | 0.9362 | 0.9072 | 94 | 0.8621 | 0.8982 | 0.8798 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9051 | 0.9347 | 0.9197 | 0.9829 |
|
100 |
+
| 0.0583 | 36.0 | 3456 | 0.0490 | 0.8713 | 0.9362 | 0.9026 | 94 | 0.8605 | 0.8862 | 0.8732 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9024 | 0.9296 | 0.9158 | 0.9818 |
|
101 |
+
| 0.0557 | 37.0 | 3552 | 0.0478 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.8675 | 0.8623 | 0.8649 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9127 | 0.9196 | 0.9161 | 0.9823 |
|
102 |
+
| 0.0587 | 38.0 | 3648 | 0.0472 | 0.8788 | 0.9255 | 0.9016 | 94 | 0.8655 | 0.8862 | 0.8757 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9066 | 0.9271 | 0.9168 | 0.9826 |
|
103 |
+
| 0.0576 | 39.0 | 3744 | 0.0477 | 0.8614 | 0.9255 | 0.8923 | 94 | 0.8667 | 0.8563 | 0.8614 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9055 | 0.9146 | 0.91 | 0.9818 |
|
104 |
+
| 0.0567 | 40.0 | 3840 | 0.0474 | 0.8713 | 0.9362 | 0.9026 | 94 | 0.8916 | 0.8862 | 0.8889 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9158 | 0.9296 | 0.9227 | 0.9831 |
|
105 |
+
| 0.0544 | 41.0 | 3936 | 0.0483 | 0.8627 | 0.9362 | 0.8980 | 94 | 0.8862 | 0.8862 | 0.8862 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9113 | 0.9296 | 0.9204 | 0.9826 |
|
106 |
+
| 0.0532 | 42.0 | 4032 | 0.0461 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.8909 | 0.8802 | 0.8855 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.925 | 0.9296 | 0.9273 | 0.9831 |
|
107 |
+
| 0.053 | 43.0 | 4128 | 0.0468 | 0.8812 | 0.9468 | 0.9128 | 94 | 0.8841 | 0.8683 | 0.8761 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9177 | 0.9246 | 0.9212 | 0.9831 |
|
108 |
+
| 0.0519 | 44.0 | 4224 | 0.0451 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.8916 | 0.8862 | 0.8889 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9227 | 0.9296 | 0.9262 | 0.9837 |
|
109 |
+
| 0.0511 | 45.0 | 4320 | 0.0447 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9254 | 0.9347 | 0.93 | 0.9837 |
|
110 |
+
| 0.0494 | 46.0 | 4416 | 0.0461 | 0.88 | 0.9362 | 0.9072 | 94 | 0.8902 | 0.8743 | 0.8822 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.92 | 0.9246 | 0.9223 | 0.9826 |
|
111 |
+
| 0.0486 | 47.0 | 4512 | 0.0458 | 0.88 | 0.9362 | 0.9072 | 94 | 0.8802 | 0.8802 | 0.8802 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9156 | 0.9271 | 0.9213 | 0.9823 |
|
112 |
+
| 0.048 | 48.0 | 4608 | 0.0453 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8909 | 0.8802 | 0.8855 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9248 | 0.9271 | 0.9260 | 0.9834 |
|
113 |
+
| 0.0485 | 49.0 | 4704 | 0.0441 | 0.88 | 0.9362 | 0.9072 | 94 | 0.9157 | 0.9102 | 0.9129 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9848 |
|
114 |
+
| 0.0478 | 50.0 | 4800 | 0.0444 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.8922 | 0.8922 | 0.8922 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9229 | 0.9322 | 0.9275 | 0.9845 |
|
115 |
+
| 0.0466 | 51.0 | 4896 | 0.0454 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.8970 | 0.8862 | 0.8916 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9275 | 0.9322 | 0.9298 | 0.9837 |
|
116 |
+
| 0.0468 | 52.0 | 4992 | 0.0441 | 0.89 | 0.9468 | 0.9175 | 94 | 0.8976 | 0.8922 | 0.8949 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9254 | 0.9347 | 0.93 | 0.9843 |
|
117 |
+
| 0.0459 | 53.0 | 5088 | 0.0442 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8976 | 0.8922 | 0.8949 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9275 | 0.9322 | 0.9298 | 0.9837 |
|
118 |
+
| 0.0465 | 54.0 | 5184 | 0.0441 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.9024 | 0.8862 | 0.8943 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9296 | 0.9296 | 0.9296 | 0.9843 |
|
119 |
+
| 0.0453 | 55.0 | 5280 | 0.0427 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8988 | 0.9042 | 0.9015 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9279 | 0.9372 | 0.9325 | 0.9851 |
|
120 |
+
| 0.0432 | 56.0 | 5376 | 0.0438 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8916 | 0.8862 | 0.8889 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.925 | 0.9296 | 0.9273 | 0.9845 |
|
121 |
+
| 0.0431 | 57.0 | 5472 | 0.0457 | 0.8627 | 0.9362 | 0.8980 | 94 | 0.9024 | 0.8862 | 0.8943 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9204 | 0.9296 | 0.925 | 0.9837 |
|
122 |
+
| 0.0424 | 58.0 | 5568 | 0.0439 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8976 | 0.8922 | 0.8949 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9275 | 0.9322 | 0.9298 | 0.9845 |
|
123 |
+
| 0.0434 | 59.0 | 5664 | 0.0441 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8909 | 0.8802 | 0.8855 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9248 | 0.9271 | 0.9260 | 0.9840 |
|
124 |
+
| 0.0429 | 60.0 | 5760 | 0.0444 | 0.9082 | 0.9468 | 0.9271 | 94 | 0.9091 | 0.8982 | 0.9036 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9348 | 0.9372 | 0.9360 | 0.9851 |
|
125 |
+
| 0.0421 | 61.0 | 5856 | 0.0442 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.9172 | 0.9281 | 0.9226 | 167 | 0.9781 | 0.9781 | 0.9781 | 137 | 0.9333 | 0.9497 | 0.9415 | 0.9856 |
|
126 |
+
| 0.0414 | 62.0 | 5952 | 0.0435 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9327 | 0.9397 | 0.9362 | 0.9848 |
|
127 |
+
| 0.0425 | 63.0 | 6048 | 0.0432 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8976 | 0.8922 | 0.8949 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9275 | 0.9322 | 0.9298 | 0.9843 |
|
128 |
+
| 0.0412 | 64.0 | 6144 | 0.0451 | 0.89 | 0.9468 | 0.9175 | 94 | 0.8889 | 0.8623 | 0.8754 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9221 | 0.9221 | 0.9221 | 0.9834 |
|
129 |
+
| 0.0422 | 65.0 | 6240 | 0.0423 | 0.9082 | 0.9468 | 0.9271 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9302 | 0.9372 | 0.9337 | 0.9851 |
|
130 |
+
| 0.0409 | 66.0 | 6336 | 0.0439 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8916 | 0.8862 | 0.8889 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.925 | 0.9296 | 0.9273 | 0.9843 |
|
131 |
+
| 0.0379 | 67.0 | 6432 | 0.0446 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8902 | 0.8743 | 0.8822 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9246 | 0.9246 | 0.9246 | 0.9840 |
|
132 |
+
| 0.0383 | 68.0 | 6528 | 0.0438 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.8869 | 0.8922 | 0.8896 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9229 | 0.9322 | 0.9275 | 0.9843 |
|
133 |
+
| 0.0404 | 69.0 | 6624 | 0.0437 | 0.9082 | 0.9468 | 0.9271 | 94 | 0.8869 | 0.8922 | 0.8896 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9254 | 0.9347 | 0.93 | 0.9848 |
|
134 |
+
| 0.0392 | 70.0 | 6720 | 0.0427 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9302 | 0.9372 | 0.9337 | 0.9851 |
|
135 |
+
| 0.0389 | 71.0 | 6816 | 0.0423 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9848 |
|
136 |
+
| 0.0401 | 72.0 | 6912 | 0.0426 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9848 |
|
137 |
+
| 0.0376 | 73.0 | 7008 | 0.0422 | 0.8980 | 0.9362 | 0.9167 | 94 | 0.9048 | 0.9102 | 0.9075 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9854 |
|
138 |
+
| 0.0364 | 74.0 | 7104 | 0.0427 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9327 | 0.9397 | 0.9362 | 0.9854 |
|
139 |
+
| 0.0389 | 75.0 | 7200 | 0.0432 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.9102 | 0.9102 | 0.9102 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9328 | 0.9422 | 0.9375 | 0.9851 |
|
140 |
+
| 0.0384 | 76.0 | 7296 | 0.0427 | 0.8889 | 0.9362 | 0.9119 | 94 | 0.9152 | 0.9042 | 0.9096 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9325 | 0.9372 | 0.9348 | 0.9845 |
|
141 |
+
| 0.0384 | 77.0 | 7392 | 0.0434 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.9048 | 0.9102 | 0.9075 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9305 | 0.9422 | 0.9363 | 0.9854 |
|
142 |
+
| 0.0368 | 78.0 | 7488 | 0.0428 | 0.8990 | 0.9468 | 0.9223 | 94 | 0.8988 | 0.9042 | 0.9015 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9280 | 0.9397 | 0.9338 | 0.9851 |
|
143 |
+
| 0.0374 | 79.0 | 7584 | 0.0429 | 0.9082 | 0.9468 | 0.9271 | 94 | 0.9091 | 0.8982 | 0.9036 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9348 | 0.9372 | 0.9360 | 0.9848 |
|
144 |
+
| 0.0371 | 80.0 | 7680 | 0.0423 | 0.89 | 0.9468 | 0.9175 | 94 | 0.9162 | 0.9162 | 0.9162 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9330 | 0.9447 | 0.9388 | 0.9856 |
|
145 |
+
| 0.0359 | 81.0 | 7776 | 0.0418 | 0.9082 | 0.9468 | 0.9271 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9302 | 0.9372 | 0.9337 | 0.9854 |
|
146 |
+
| 0.0357 | 82.0 | 7872 | 0.0429 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9851 |
|
147 |
+
| 0.0354 | 83.0 | 7968 | 0.0426 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9352 | 0.9422 | 0.9387 | 0.9854 |
|
148 |
+
| 0.0354 | 84.0 | 8064 | 0.0419 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9352 | 0.9422 | 0.9387 | 0.9854 |
|
149 |
+
| 0.0358 | 85.0 | 8160 | 0.0425 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.8976 | 0.8922 | 0.8949 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9302 | 0.9372 | 0.9337 | 0.9848 |
|
150 |
+
| 0.0384 | 86.0 | 8256 | 0.0423 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.8922 | 0.8922 | 0.8922 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9279 | 0.9372 | 0.9325 | 0.9848 |
|
151 |
+
| 0.0354 | 87.0 | 8352 | 0.0422 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9352 | 0.9422 | 0.9387 | 0.9854 |
|
152 |
+
| 0.036 | 88.0 | 8448 | 0.0415 | 0.9082 | 0.9468 | 0.9271 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9302 | 0.9372 | 0.9337 | 0.9851 |
|
153 |
+
| 0.0354 | 89.0 | 8544 | 0.0419 | 0.9 | 0.9574 | 0.9278 | 94 | 0.9048 | 0.9102 | 0.9075 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9307 | 0.9447 | 0.9377 | 0.9856 |
|
154 |
+
| 0.0348 | 90.0 | 8640 | 0.0423 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9851 |
|
155 |
+
| 0.0355 | 91.0 | 8736 | 0.0427 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9851 |
|
156 |
+
| 0.0359 | 92.0 | 8832 | 0.0427 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9303 | 0.9397 | 0.9350 | 0.9851 |
|
157 |
+
| 0.0366 | 93.0 | 8928 | 0.0423 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9328 | 0.9422 | 0.9375 | 0.9856 |
|
158 |
+
| 0.0328 | 94.0 | 9024 | 0.0421 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9352 | 0.9422 | 0.9387 | 0.9859 |
|
159 |
+
| 0.0332 | 95.0 | 9120 | 0.0422 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9096 | 0.9042 | 0.9069 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9352 | 0.9422 | 0.9387 | 0.9854 |
|
160 |
+
| 0.0354 | 96.0 | 9216 | 0.0420 | 0.9082 | 0.9468 | 0.9271 | 94 | 0.8982 | 0.8982 | 0.8982 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9302 | 0.9372 | 0.9337 | 0.9854 |
|
161 |
+
| 0.0361 | 97.0 | 9312 | 0.0423 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9152 | 0.9042 | 0.9096 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9375 | 0.9422 | 0.9398 | 0.9856 |
|
162 |
+
| 0.0349 | 98.0 | 9408 | 0.0421 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9328 | 0.9422 | 0.9375 | 0.9856 |
|
163 |
+
| 0.0355 | 99.0 | 9504 | 0.0420 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9328 | 0.9422 | 0.9375 | 0.9856 |
|
164 |
+
| 0.035 | 100.0 | 9600 | 0.0421 | 0.9091 | 0.9574 | 0.9326 | 94 | 0.9042 | 0.9042 | 0.9042 | 167 | 0.9853 | 0.9781 | 0.9817 | 137 | 0.9328 | 0.9422 | 0.9375 | 0.9856 |
|
165 |
+
|
166 |
+
|
167 |
+
### Framework versions
|
168 |
+
|
169 |
+
- Transformers 4.40.2
|
170 |
+
- Pytorch 2.3.0+cu121
|
171 |
+
- Datasets 2.19.1
|
172 |
+
- Tokenizers 0.19.1
|
adapter-ner/adapter_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"adapter_residual_before_ln": false,
|
4 |
+
"cross_adapter": false,
|
5 |
+
"dropout": 0.0,
|
6 |
+
"factorized_phm_W": true,
|
7 |
+
"factorized_phm_rule": false,
|
8 |
+
"hypercomplex_nonlinearity": "glorot-uniform",
|
9 |
+
"init_weights": "bert",
|
10 |
+
"inv_adapter": null,
|
11 |
+
"inv_adapter_reduction_factor": null,
|
12 |
+
"is_parallel": false,
|
13 |
+
"learn_phm": true,
|
14 |
+
"leave_out": [],
|
15 |
+
"ln_after": false,
|
16 |
+
"ln_before": false,
|
17 |
+
"mh_adapter": false,
|
18 |
+
"non_linearity": "relu",
|
19 |
+
"original_ln_after": true,
|
20 |
+
"original_ln_before": true,
|
21 |
+
"output_adapter": true,
|
22 |
+
"phm_bias": true,
|
23 |
+
"phm_c_init": "normal",
|
24 |
+
"phm_dim": 4,
|
25 |
+
"phm_init_range": 0.0001,
|
26 |
+
"phm_layer": false,
|
27 |
+
"phm_rank": 1,
|
28 |
+
"reduction_factor": 64,
|
29 |
+
"residual_before_ln": true,
|
30 |
+
"scaling": 1.0,
|
31 |
+
"shared_W_phm": false,
|
32 |
+
"shared_phm_rule": true,
|
33 |
+
"use_gating": false
|
34 |
+
},
|
35 |
+
"config_id": "337ea3bbdc05e9b8",
|
36 |
+
"hidden_size": 768,
|
37 |
+
"model_class": "BertForTokenClassification",
|
38 |
+
"model_name": "indolem/indobert-base-uncased",
|
39 |
+
"model_type": "bert",
|
40 |
+
"name": "adapter-ner",
|
41 |
+
"version": "0.2.2"
|
42 |
+
}
|
adapter-ner/head_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": null,
|
3 |
+
"hidden_size": 768,
|
4 |
+
"label2id": {
|
5 |
+
"B-LOCATION": 0,
|
6 |
+
"B-ORGANIZATION": 1,
|
7 |
+
"B-PERSON": 2,
|
8 |
+
"I-LOCATION": 3,
|
9 |
+
"I-ORGANIZATION": 4,
|
10 |
+
"I-PERSON": 5,
|
11 |
+
"O": 6
|
12 |
+
},
|
13 |
+
"model_class": "BertForTokenClassification",
|
14 |
+
"model_name": "indolem/indobert-base-uncased",
|
15 |
+
"model_type": "bert",
|
16 |
+
"name": null,
|
17 |
+
"num_labels": 7,
|
18 |
+
"version": "0.2.2"
|
19 |
+
}
|
adapter-ner/pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ffa6f0cb066e96acf72fd4441f85d51cbe40d560091f1f0650e0e607fd1282c
|
3 |
+
size 939238
|
adapter-ner/pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d56103bea9bf8ecf0d992a230b442608828ab32a78ced2cbe1a6a628225c06e7
|
3 |
+
size 23066
|