Edit model card

nerui-unipelt-4

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0644
  • Location Precision: 0.9091
  • Location Recall: 0.9709
  • Location F1: 0.9390
  • Location Number: 103
  • Organization Precision: 0.9281
  • Organization Recall: 0.9064
  • Organization F1: 0.9172
  • Organization Number: 171
  • Person Precision: 0.9771
  • Person Recall: 0.9771
  • Person F1: 0.9771
  • Person Number: 131
  • Overall Precision: 0.9387
  • Overall Recall: 0.9457
  • Overall F1: 0.9422
  • Overall Accuracy: 0.9878

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Location Precision Location Recall Location F1 Location Number Organization Precision Organization Recall Organization F1 Organization Number Person Precision Person Recall Person F1 Person Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8815 1.0 96 0.5185 0.0 0.0 0.0 103 0.0 0.0 0.0 171 0.0 0.0 0.0 131 0.0 0.0 0.0 0.8379
0.3991 2.0 192 0.2479 0.3233 0.4175 0.3644 103 0.4848 0.5614 0.5203 171 0.5056 0.6947 0.5852 131 0.4501 0.5679 0.5022 0.9238
0.2071 3.0 288 0.1065 0.7447 0.6796 0.7107 103 0.7606 0.8363 0.7967 171 0.9481 0.9771 0.9624 131 0.8177 0.8420 0.8297 0.9685
0.1278 4.0 384 0.0769 0.8529 0.8447 0.8488 103 0.8 0.8889 0.8421 171 0.9624 0.9771 0.9697 131 0.8635 0.9062 0.8843 0.9762
0.1026 5.0 480 0.0683 0.8812 0.8641 0.8725 103 0.8580 0.8480 0.8529 171 0.9407 0.9695 0.9549 131 0.8914 0.8914 0.8914 0.9785
0.087 6.0 576 0.0551 0.7881 0.9029 0.8416 103 0.9145 0.8129 0.8607 171 0.9697 0.9771 0.9734 131 0.8955 0.8889 0.8922 0.9815
0.0744 7.0 672 0.0487 0.9082 0.8641 0.8856 103 0.9070 0.9123 0.9096 171 0.9697 0.9771 0.9734 131 0.9279 0.9210 0.9244 0.9854
0.0709 8.0 768 0.0468 0.8205 0.9320 0.8727 103 0.9177 0.8480 0.8815 171 0.9621 0.9695 0.9658 131 0.9042 0.9086 0.9064 0.9845
0.0659 9.0 864 0.0453 0.8376 0.9515 0.8909 103 0.9057 0.8421 0.8727 171 0.9552 0.9771 0.9660 131 0.9024 0.9136 0.9080 0.9845
0.0584 10.0 960 0.0402 0.8879 0.9223 0.9048 103 0.9128 0.9181 0.9155 171 0.9624 0.9771 0.9697 131 0.9223 0.9383 0.9302 0.9887
0.0525 11.0 1056 0.0395 0.9417 0.9417 0.9417 103 0.9176 0.9123 0.9150 171 0.9697 0.9771 0.9734 131 0.9407 0.9407 0.9407 0.9884
0.0482 12.0 1152 0.0438 0.8909 0.9515 0.9202 103 0.9146 0.8772 0.8955 171 0.9549 0.9695 0.9621 131 0.9214 0.9259 0.9236 0.9862
0.0441 13.0 1248 0.0445 0.9065 0.9417 0.9238 103 0.9048 0.8889 0.8968 171 0.9624 0.9771 0.9697 131 0.9240 0.9309 0.9274 0.9862
0.0401 14.0 1344 0.0480 0.8889 0.9320 0.9100 103 0.9182 0.8538 0.8848 171 0.9771 0.9771 0.9771 131 0.9296 0.9136 0.9215 0.9845
0.0382 15.0 1440 0.0410 0.9159 0.9515 0.9333 103 0.9118 0.9064 0.9091 171 0.9771 0.9771 0.9771 131 0.9338 0.9407 0.9373 0.9884
0.0371 16.0 1536 0.0426 0.8991 0.9515 0.9245 103 0.9048 0.8889 0.8968 171 0.9621 0.9695 0.9658 131 0.9218 0.9309 0.9263 0.9870
0.0323 17.0 1632 0.0440 0.9065 0.9417 0.9238 103 0.9123 0.9123 0.9123 171 0.9549 0.9695 0.9621 131 0.9246 0.9383 0.9314 0.9865
0.0304 18.0 1728 0.0447 0.8839 0.9612 0.9209 103 0.9157 0.8889 0.9021 171 0.9697 0.9771 0.9734 131 0.9244 0.9358 0.9301 0.9865
0.0277 19.0 1824 0.0439 0.8868 0.9126 0.8995 103 0.9030 0.8713 0.8869 171 0.9621 0.9695 0.9658 131 0.9181 0.9136 0.9158 0.9856
0.0276 20.0 1920 0.0466 0.9065 0.9417 0.9238 103 0.9059 0.9006 0.9032 171 0.9697 0.9771 0.9734 131 0.9267 0.9358 0.9312 0.9865
0.0264 21.0 2016 0.0508 0.8761 0.9612 0.9167 103 0.9430 0.8713 0.9058 171 0.9621 0.9695 0.9658 131 0.9305 0.9259 0.9282 0.9854
0.0249 22.0 2112 0.0477 0.9009 0.9709 0.9346 103 0.9333 0.9006 0.9167 171 0.9697 0.9771 0.9734 131 0.9363 0.9432 0.9397 0.9865
0.0233 23.0 2208 0.0485 0.8929 0.9709 0.9302 103 0.9157 0.8889 0.9021 171 0.9624 0.9771 0.9697 131 0.9246 0.9383 0.9314 0.9865
0.0224 24.0 2304 0.0427 0.8919 0.9612 0.9252 103 0.9448 0.9006 0.9222 171 0.9624 0.9771 0.9697 131 0.9361 0.9407 0.9384 0.9873
0.0205 25.0 2400 0.0468 0.8559 0.9806 0.9140 103 0.9367 0.8655 0.8997 171 0.9552 0.9771 0.9660 131 0.9195 0.9309 0.9252 0.9867
0.0196 26.0 2496 0.0419 0.9167 0.9612 0.9384 103 0.9394 0.9064 0.9226 171 0.9697 0.9771 0.9734 131 0.9432 0.9432 0.9432 0.9876
0.0185 27.0 2592 0.0421 0.8938 0.9806 0.9352 103 0.8941 0.8889 0.8915 171 0.9624 0.9771 0.9697 131 0.9159 0.9407 0.9281 0.9865
0.0183 28.0 2688 0.0463 0.9429 0.9612 0.9519 103 0.9034 0.9298 0.9164 171 0.9697 0.9771 0.9734 131 0.9346 0.9531 0.9438 0.9878
0.0168 29.0 2784 0.0491 0.8879 0.9223 0.9048 103 0.9268 0.8889 0.9075 171 0.9474 0.9618 0.9545 131 0.9233 0.9210 0.9221 0.9865
0.0176 30.0 2880 0.0450 0.9143 0.9320 0.9231 103 0.8757 0.9064 0.8908 171 0.9697 0.9771 0.9734 131 0.9155 0.9358 0.9255 0.9856
0.0149 31.0 2976 0.0507 0.8909 0.9515 0.9202 103 0.9187 0.8596 0.8882 171 0.9549 0.9695 0.9621 131 0.9231 0.9185 0.9208 0.9859
0.017 32.0 3072 0.0449 0.9 0.9612 0.9296 103 0.9217 0.8947 0.9080 171 0.9771 0.9771 0.9771 131 0.9337 0.9383 0.9360 0.9878
0.0142 33.0 3168 0.0454 0.8919 0.9612 0.9252 103 0.8976 0.8713 0.8843 171 0.9621 0.9695 0.9658 131 0.9169 0.9259 0.9214 0.9865
0.0142 34.0 3264 0.0512 0.9074 0.9515 0.9289 103 0.9141 0.8713 0.8922 171 0.9621 0.9695 0.9658 131 0.9280 0.9235 0.9257 0.9865
0.013 35.0 3360 0.0532 0.9099 0.9806 0.9439 103 0.9427 0.8655 0.9024 171 0.9621 0.9695 0.9658 131 0.94 0.9284 0.9342 0.9876
0.0136 36.0 3456 0.0513 0.8919 0.9612 0.9252 103 0.925 0.8655 0.8943 171 0.9621 0.9695 0.9658 131 0.9280 0.9235 0.9257 0.9867
0.012 37.0 3552 0.0502 0.96 0.9320 0.9458 103 0.9172 0.9064 0.9118 171 0.9621 0.9695 0.9658 131 0.9426 0.9333 0.9380 0.9881
0.0116 38.0 3648 0.0532 0.9009 0.9709 0.9346 103 0.925 0.8655 0.8943 171 0.9621 0.9695 0.9658 131 0.9305 0.9259 0.9282 0.9856
0.0113 39.0 3744 0.0485 0.9 0.9612 0.9296 103 0.9091 0.8772 0.8929 171 0.9771 0.9771 0.9771 131 0.9286 0.9309 0.9297 0.9873
0.0111 40.0 3840 0.0514 0.9074 0.9515 0.9289 103 0.9162 0.8947 0.9053 171 0.9695 0.9695 0.9695 131 0.9310 0.9333 0.9322 0.9867
0.0103 41.0 3936 0.0545 0.9083 0.9612 0.9340 103 0.9264 0.8830 0.9042 171 0.9771 0.9771 0.9771 131 0.9380 0.9333 0.9356 0.9873
0.0098 42.0 4032 0.0525 0.9252 0.9612 0.9429 103 0.9059 0.9006 0.9032 171 0.9771 0.9771 0.9771 131 0.9338 0.9407 0.9373 0.9873
0.0102 43.0 4128 0.0489 0.9151 0.9417 0.9282 103 0.9128 0.9181 0.9155 171 0.9621 0.9695 0.9658 131 0.9293 0.9407 0.9350 0.9876
0.0086 44.0 4224 0.0611 0.875 0.9515 0.9116 103 0.9152 0.8830 0.8988 171 0.9771 0.9771 0.9771 131 0.9240 0.9309 0.9274 0.9862
0.0099 45.0 4320 0.0527 0.8739 0.9417 0.9065 103 0.9217 0.8947 0.9080 171 0.9621 0.9695 0.9658 131 0.9218 0.9309 0.9263 0.9859
0.0079 46.0 4416 0.0527 0.8761 0.9612 0.9167 103 0.9064 0.9064 0.9064 171 0.9771 0.9771 0.9771 131 0.9205 0.9432 0.9317 0.9867
0.0094 47.0 4512 0.0539 0.9151 0.9417 0.9282 103 0.8814 0.9123 0.8966 171 0.9771 0.9771 0.9771 131 0.9203 0.9407 0.9304 0.9862
0.0088 48.0 4608 0.0595 0.9091 0.9709 0.9390 103 0.9371 0.8713 0.9030 171 0.9771 0.9771 0.9771 131 0.9425 0.9309 0.9366 0.9873
0.0071 49.0 4704 0.0539 0.8981 0.9417 0.9194 103 0.9059 0.9006 0.9032 171 0.9621 0.9695 0.9658 131 0.9220 0.9333 0.9276 0.9862
0.0079 50.0 4800 0.0529 0.8991 0.9515 0.9245 103 0.9167 0.9006 0.9086 171 0.9771 0.9771 0.9771 131 0.9314 0.9383 0.9348 0.9867
0.0075 51.0 4896 0.0543 0.8909 0.9515 0.9202 103 0.9226 0.9064 0.9145 171 0.9771 0.9771 0.9771 131 0.9315 0.9407 0.9361 0.9870
0.0078 52.0 4992 0.0541 0.8909 0.9515 0.9202 103 0.8953 0.9006 0.8980 171 0.9695 0.9695 0.9695 131 0.9177 0.9358 0.9267 0.9870
0.0075 53.0 5088 0.0543 0.9151 0.9417 0.9282 103 0.9172 0.9064 0.9118 171 0.9771 0.9771 0.9771 131 0.9360 0.9383 0.9371 0.9878
0.0081 54.0 5184 0.0503 0.9 0.9612 0.9296 103 0.9176 0.9123 0.9150 171 0.9771 0.9771 0.9771 131 0.9319 0.9457 0.9387 0.9878
0.006 55.0 5280 0.0562 0.9083 0.9612 0.9340 103 0.9398 0.9123 0.9258 171 0.9771 0.9771 0.9771 131 0.9433 0.9457 0.9445 0.9881
0.0071 56.0 5376 0.0554 0.9083 0.9612 0.9340 103 0.9273 0.8947 0.9107 171 0.9771 0.9771 0.9771 131 0.9383 0.9383 0.9383 0.9873
0.0073 57.0 5472 0.0639 0.9083 0.9612 0.9340 103 0.9367 0.8655 0.8997 171 0.9771 0.9771 0.9771 131 0.9422 0.9259 0.9340 0.9867
0.0048 58.0 5568 0.0563 0.9083 0.9612 0.9340 103 0.9394 0.9064 0.9226 171 0.9771 0.9771 0.9771 131 0.9432 0.9432 0.9432 0.9887
0.0067 59.0 5664 0.0551 0.9333 0.9515 0.9423 103 0.9240 0.9240 0.9240 171 0.9771 0.9771 0.9771 131 0.9435 0.9481 0.9458 0.9881
0.0063 60.0 5760 0.0597 0.9167 0.9612 0.9384 103 0.9394 0.9064 0.9226 171 0.9771 0.9771 0.9771 131 0.9455 0.9432 0.9444 0.9887
0.0061 61.0 5856 0.0535 0.9083 0.9612 0.9340 103 0.9070 0.9123 0.9096 171 0.9771 0.9771 0.9771 131 0.9296 0.9457 0.9376 0.9878
0.0043 62.0 5952 0.0623 0.9 0.9612 0.9296 103 0.9212 0.8889 0.9048 171 0.9771 0.9771 0.9771 131 0.9335 0.9358 0.9346 0.9865
0.0052 63.0 6048 0.0562 0.9245 0.9515 0.9378 103 0.9118 0.9064 0.9091 171 0.9695 0.9695 0.9695 131 0.9337 0.9383 0.9360 0.9881
0.0054 64.0 6144 0.0590 0.9074 0.9515 0.9289 103 0.9167 0.9006 0.9086 171 0.9695 0.9695 0.9695 131 0.9312 0.9358 0.9335 0.9865
0.0045 65.0 6240 0.0523 0.9065 0.9417 0.9238 103 0.9034 0.9298 0.9164 171 0.9773 0.9847 0.9810 131 0.9277 0.9506 0.9390 0.9878
0.0044 66.0 6336 0.0595 0.9167 0.9612 0.9384 103 0.9029 0.9240 0.9133 171 0.9773 0.9847 0.9810 131 0.9301 0.9531 0.9415 0.9878
0.0049 67.0 6432 0.0597 0.9091 0.9709 0.9390 103 0.9277 0.9006 0.9139 171 0.9773 0.9847 0.9810 131 0.9387 0.9457 0.9422 0.9876
0.0043 68.0 6528 0.0664 0.9167 0.9612 0.9384 103 0.9152 0.8830 0.8988 171 0.9771 0.9771 0.9771 131 0.9356 0.9333 0.9345 0.9865
0.0047 69.0 6624 0.0610 0.9159 0.9515 0.9333 103 0.9059 0.9006 0.9032 171 0.9695 0.9695 0.9695 131 0.9289 0.9358 0.9323 0.9859
0.0048 70.0 6720 0.0642 0.9252 0.9612 0.9429 103 0.9176 0.9123 0.9150 171 0.9771 0.9771 0.9771 131 0.9387 0.9457 0.9422 0.9876
0.0045 71.0 6816 0.0592 0.9245 0.9515 0.9378 103 0.8983 0.9298 0.9138 171 0.9771 0.9771 0.9771 131 0.9300 0.9506 0.9402 0.9881
0.0037 72.0 6912 0.0623 0.9083 0.9612 0.9340 103 0.9281 0.9064 0.9172 171 0.9771 0.9771 0.9771 131 0.9386 0.9432 0.9409 0.9873
0.0052 73.0 7008 0.0650 0.9083 0.9612 0.9340 103 0.9059 0.9006 0.9032 171 0.9771 0.9771 0.9771 131 0.9293 0.9407 0.9350 0.9867
0.0037 74.0 7104 0.0595 0.9245 0.9515 0.9378 103 0.9070 0.9123 0.9096 171 0.9771 0.9771 0.9771 131 0.9340 0.9432 0.9386 0.9873
0.0028 75.0 7200 0.0637 0.9091 0.9709 0.9390 103 0.9387 0.8947 0.9162 171 0.9771 0.9771 0.9771 131 0.9431 0.9407 0.9419 0.9881
0.0035 76.0 7296 0.0613 0.9083 0.9612 0.9340 103 0.9017 0.9123 0.9070 171 0.9771 0.9771 0.9771 131 0.9274 0.9457 0.9364 0.9878
0.0038 77.0 7392 0.0655 0.9 0.9612 0.9296 103 0.9217 0.8947 0.9080 171 0.9771 0.9771 0.9771 131 0.9337 0.9383 0.9360 0.9876
0.0046 78.0 7488 0.0635 0.9 0.9612 0.9296 103 0.9167 0.9006 0.9086 171 0.9771 0.9771 0.9771 131 0.9315 0.9407 0.9361 0.9876
0.0036 79.0 7584 0.0615 0.9083 0.9612 0.9340 103 0.9277 0.9006 0.9139 171 0.9771 0.9771 0.9771 131 0.9384 0.9407 0.9396 0.9881
0.0042 80.0 7680 0.0579 0.8991 0.9515 0.9245 103 0.9070 0.9123 0.9096 171 0.9771 0.9771 0.9771 131 0.9272 0.9432 0.9351 0.9878
0.0037 81.0 7776 0.0585 0.9074 0.9515 0.9289 103 0.9118 0.9064 0.9091 171 0.9769 0.9695 0.9732 131 0.9314 0.9383 0.9348 0.9876
0.0035 82.0 7872 0.0573 0.9174 0.9709 0.9434 103 0.9290 0.9181 0.9235 171 0.9771 0.9771 0.9771 131 0.9413 0.9506 0.9459 0.9887
0.0031 83.0 7968 0.0624 0.9174 0.9709 0.9434 103 0.9281 0.9064 0.9172 171 0.9771 0.9771 0.9771 131 0.9410 0.9457 0.9433 0.9881
0.003 84.0 8064 0.0637 0.9091 0.9709 0.9390 103 0.9226 0.9064 0.9145 171 0.9697 0.9771 0.9734 131 0.9341 0.9457 0.9399 0.9878
0.0036 85.0 8160 0.0644 0.9009 0.9709 0.9346 103 0.9290 0.9181 0.9235 171 0.9771 0.9771 0.9771 131 0.9367 0.9506 0.9436 0.9878
0.0035 86.0 8256 0.0636 0.9009 0.9709 0.9346 103 0.9273 0.8947 0.9107 171 0.9697 0.9771 0.9734 131 0.9338 0.9407 0.9373 0.9876
0.0032 87.0 8352 0.0619 0.9091 0.9709 0.9390 103 0.9281 0.9064 0.9172 171 0.9771 0.9771 0.9771 131 0.9387 0.9457 0.9422 0.9881
0.0029 88.0 8448 0.0604 0.9091 0.9709 0.9390 103 0.9075 0.9181 0.9128 171 0.9769 0.9695 0.9732 131 0.9298 0.9481 0.9389 0.9878
0.0031 89.0 8544 0.0640 0.9083 0.9612 0.9340 103 0.9023 0.9181 0.9101 171 0.9769 0.9695 0.9732 131 0.9274 0.9457 0.9364 0.9878
0.0028 90.0 8640 0.0659 0.9009 0.9709 0.9346 103 0.9277 0.9006 0.9139 171 0.9771 0.9771 0.9771 131 0.9363 0.9432 0.9397 0.9881
0.0028 91.0 8736 0.0627 0.9167 0.9612 0.9384 103 0.9235 0.9181 0.9208 171 0.9771 0.9771 0.9771 131 0.9389 0.9481 0.9435 0.9887
0.0032 92.0 8832 0.0658 0.9091 0.9709 0.9390 103 0.9281 0.9064 0.9172 171 0.9771 0.9771 0.9771 131 0.9387 0.9457 0.9422 0.9878
0.0023 93.0 8928 0.0636 0.9174 0.9709 0.9434 103 0.9231 0.9123 0.9176 171 0.9771 0.9771 0.9771 131 0.9389 0.9481 0.9435 0.9884
0.0024 94.0 9024 0.0651 0.9174 0.9709 0.9434 103 0.9394 0.9064 0.9226 171 0.9771 0.9771 0.9771 131 0.9457 0.9457 0.9457 0.9878
0.0029 95.0 9120 0.0632 0.9167 0.9612 0.9384 103 0.9118 0.9064 0.9091 171 0.9771 0.9771 0.9771 131 0.9340 0.9432 0.9386 0.9876
0.0021 96.0 9216 0.0634 0.9091 0.9709 0.9390 103 0.9231 0.9123 0.9176 171 0.9771 0.9771 0.9771 131 0.9366 0.9481 0.9423 0.9884
0.0027 97.0 9312 0.0650 0.9091 0.9709 0.9390 103 0.9394 0.9064 0.9226 171 0.9771 0.9771 0.9771 131 0.9433 0.9457 0.9445 0.9878
0.0019 98.0 9408 0.0640 0.9091 0.9709 0.9390 103 0.9394 0.9064 0.9226 171 0.9771 0.9771 0.9771 131 0.9433 0.9457 0.9445 0.9878
0.0026 99.0 9504 0.0646 0.9091 0.9709 0.9390 103 0.9394 0.9064 0.9226 171 0.9771 0.9771 0.9771 131 0.9433 0.9457 0.9445 0.9878
0.0027 100.0 9600 0.0644 0.9091 0.9709 0.9390 103 0.9281 0.9064 0.9172 171 0.9771 0.9771 0.9771 131 0.9387 0.9457 0.9422 0.9878

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for apwic/nerui-unipelt-4

Finetuned
(367)
this model