Edit model card

sentiment-base-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8336
  • Accuracy: 0.8972
  • Precision: 0.8708
  • Recall: 0.8898
  • F1: 0.8793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3942 1.0 122 0.3128 0.8797 0.8858 0.8174 0.8419
0.2168 2.0 244 0.3044 0.8897 0.8659 0.8695 0.8676
0.1372 3.0 366 0.5318 0.8897 0.8852 0.8420 0.8595
0.0957 4.0 488 0.4765 0.8947 0.8676 0.8880 0.8766
0.0674 5.0 610 0.5523 0.8872 0.8577 0.9027 0.8729
0.0535 6.0 732 0.5159 0.9073 0.8888 0.8869 0.8879
0.027 7.0 854 0.5941 0.8872 0.8634 0.8652 0.8643
0.0223 8.0 976 0.7166 0.8797 0.8549 0.8549 0.8549
0.0145 9.0 1098 0.7023 0.9023 0.8802 0.8858 0.8830
0.0106 10.0 1220 0.6993 0.9048 0.8881 0.8801 0.8839
0.0093 11.0 1342 0.8274 0.8947 0.8789 0.8630 0.8704
0.0086 12.0 1464 0.7972 0.8972 0.8796 0.8698 0.8745
0.0106 13.0 1586 0.7592 0.8972 0.8715 0.8873 0.8787
0.0072 14.0 1708 0.7834 0.8997 0.8748 0.8891 0.8814
0.0098 15.0 1830 0.8049 0.8997 0.8767 0.8841 0.8803
0.0058 16.0 1952 0.7671 0.8997 0.8767 0.8841 0.8803
0.0035 17.0 2074 0.8085 0.9023 0.8758 0.8983 0.8857
0.0052 18.0 2196 0.7721 0.8997 0.8757 0.8866 0.8808
0.0028 19.0 2318 0.8359 0.8972 0.8708 0.8898 0.8793
0.0033 20.0 2440 0.8336 0.8972 0.8708 0.8898 0.8793

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month
83
Safetensors
Model size
112M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for apwic/sentiment-base-0

Finetuned
(367)
this model