sentiment-lora-r16
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2631
- Accuracy: 0.8872
- Precision: 0.8658
- Recall: 0.8602
- F1: 0.8629
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5544 | 1.0 | 122 | 0.5252 | 0.7218 | 0.6705 | 0.6807 | 0.6746 |
0.4974 | 2.0 | 244 | 0.4521 | 0.7845 | 0.7792 | 0.6650 | 0.6840 |
0.4206 | 3.0 | 366 | 0.3642 | 0.8296 | 0.8034 | 0.7694 | 0.7829 |
0.3657 | 4.0 | 488 | 0.3376 | 0.8471 | 0.8184 | 0.8068 | 0.8122 |
0.3188 | 5.0 | 610 | 0.3198 | 0.8496 | 0.8202 | 0.8136 | 0.8167 |
0.3069 | 6.0 | 732 | 0.3127 | 0.8546 | 0.8239 | 0.8272 | 0.8255 |
0.2838 | 7.0 | 854 | 0.3053 | 0.8672 | 0.8449 | 0.8285 | 0.8360 |
0.2699 | 8.0 | 976 | 0.2976 | 0.8747 | 0.8647 | 0.8238 | 0.8404 |
0.2614 | 9.0 | 1098 | 0.2887 | 0.8647 | 0.8398 | 0.8292 | 0.8342 |
0.2515 | 10.0 | 1220 | 0.2852 | 0.8596 | 0.8316 | 0.8282 | 0.8298 |
0.2453 | 11.0 | 1342 | 0.2800 | 0.8697 | 0.8411 | 0.8478 | 0.8443 |
0.236 | 12.0 | 1464 | 0.2718 | 0.8797 | 0.8633 | 0.8399 | 0.8502 |
0.227 | 13.0 | 1586 | 0.2712 | 0.8797 | 0.8560 | 0.8524 | 0.8541 |
0.227 | 14.0 | 1708 | 0.2757 | 0.8697 | 0.8386 | 0.8603 | 0.8479 |
0.2171 | 15.0 | 1830 | 0.2708 | 0.8822 | 0.8530 | 0.8742 | 0.8622 |
0.214 | 16.0 | 1952 | 0.2632 | 0.8872 | 0.8658 | 0.8602 | 0.8629 |
0.2124 | 17.0 | 2074 | 0.2639 | 0.8822 | 0.8574 | 0.8592 | 0.8583 |
0.2166 | 18.0 | 2196 | 0.2632 | 0.8872 | 0.8645 | 0.8627 | 0.8636 |
0.2086 | 19.0 | 2318 | 0.2630 | 0.8822 | 0.8585 | 0.8567 | 0.8575 |
0.2113 | 20.0 | 2440 | 0.2631 | 0.8872 | 0.8658 | 0.8602 | 0.8629 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
Model tree for apwic/sentiment-lora-r16
Base model
indolem/indobert-base-uncased