metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r2a0d0.05-0
results: []
sentiment-lora-r2a0d0.05-0
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3642
- Accuracy: 0.8346
- Precision: 0.7993
- Recall: 0.8080
- F1: 0.8034
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5633 | 1.0 | 122 | 0.5100 | 0.7168 | 0.6536 | 0.6446 | 0.6484 |
0.5083 | 2.0 | 244 | 0.4999 | 0.7243 | 0.6825 | 0.7049 | 0.6887 |
0.4904 | 3.0 | 366 | 0.4595 | 0.7619 | 0.7120 | 0.7065 | 0.7091 |
0.4644 | 4.0 | 488 | 0.4287 | 0.7920 | 0.7520 | 0.7253 | 0.7358 |
0.4439 | 5.0 | 610 | 0.4399 | 0.7519 | 0.7127 | 0.7395 | 0.7203 |
0.4241 | 6.0 | 732 | 0.4027 | 0.8221 | 0.7860 | 0.7816 | 0.7837 |
0.4092 | 7.0 | 854 | 0.4019 | 0.8070 | 0.7674 | 0.7835 | 0.7743 |
0.3891 | 8.0 | 976 | 0.3805 | 0.8271 | 0.7912 | 0.7926 | 0.7919 |
0.3777 | 9.0 | 1098 | 0.3789 | 0.8271 | 0.7912 | 0.7926 | 0.7919 |
0.369 | 10.0 | 1220 | 0.3758 | 0.8396 | 0.8071 | 0.8040 | 0.8055 |
0.3531 | 11.0 | 1342 | 0.3805 | 0.8296 | 0.7933 | 0.8044 | 0.7984 |
0.3486 | 12.0 | 1464 | 0.3801 | 0.8321 | 0.7960 | 0.8112 | 0.8027 |
0.3472 | 13.0 | 1586 | 0.3675 | 0.8421 | 0.8098 | 0.8083 | 0.8091 |
0.3379 | 14.0 | 1708 | 0.3654 | 0.8371 | 0.8032 | 0.8047 | 0.8040 |
0.3353 | 15.0 | 1830 | 0.3703 | 0.8421 | 0.8080 | 0.8183 | 0.8127 |
0.3213 | 16.0 | 1952 | 0.3709 | 0.8371 | 0.8019 | 0.8147 | 0.8077 |
0.3214 | 17.0 | 2074 | 0.3641 | 0.8371 | 0.8024 | 0.8097 | 0.8059 |
0.3225 | 18.0 | 2196 | 0.3640 | 0.8371 | 0.8024 | 0.8097 | 0.8059 |
0.3159 | 19.0 | 2318 | 0.3649 | 0.8346 | 0.7993 | 0.8080 | 0.8034 |
0.3195 | 20.0 | 2440 | 0.3642 | 0.8346 | 0.7993 | 0.8080 | 0.8034 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2