sentiment-lora-r2a2d0.15-1
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3633
- Accuracy: 0.8396
- Precision: 0.8128
- Recall: 0.7890
- F1: 0.7992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5664 | 1.0 | 122 | 0.5221 | 0.7218 | 0.6580 | 0.6432 | 0.6487 |
0.5148 | 2.0 | 244 | 0.5111 | 0.7243 | 0.6758 | 0.6899 | 0.6810 |
0.4924 | 3.0 | 366 | 0.4791 | 0.7444 | 0.6884 | 0.6741 | 0.6799 |
0.4615 | 4.0 | 488 | 0.4651 | 0.7644 | 0.7148 | 0.7058 | 0.7099 |
0.4516 | 5.0 | 610 | 0.4581 | 0.7644 | 0.7214 | 0.7408 | 0.7286 |
0.4291 | 6.0 | 732 | 0.4295 | 0.7895 | 0.7462 | 0.7385 | 0.7421 |
0.4194 | 7.0 | 854 | 0.4191 | 0.7995 | 0.7581 | 0.7606 | 0.7593 |
0.3994 | 8.0 | 976 | 0.4048 | 0.8120 | 0.7745 | 0.7645 | 0.7691 |
0.3919 | 9.0 | 1098 | 0.3950 | 0.8246 | 0.7954 | 0.7659 | 0.7778 |
0.3762 | 10.0 | 1220 | 0.3881 | 0.8271 | 0.8022 | 0.7626 | 0.7777 |
0.3704 | 11.0 | 1342 | 0.3806 | 0.8271 | 0.7949 | 0.7776 | 0.7853 |
0.3642 | 12.0 | 1464 | 0.3733 | 0.8421 | 0.8122 | 0.8008 | 0.8061 |
0.3614 | 13.0 | 1586 | 0.3753 | 0.8321 | 0.8092 | 0.7687 | 0.7842 |
0.3474 | 14.0 | 1708 | 0.3695 | 0.8396 | 0.8155 | 0.7840 | 0.7969 |
0.3479 | 15.0 | 1830 | 0.3675 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
0.3347 | 16.0 | 1952 | 0.3649 | 0.8421 | 0.8142 | 0.7958 | 0.8040 |
0.335 | 17.0 | 2074 | 0.3653 | 0.8371 | 0.8114 | 0.7822 | 0.7943 |
0.3361 | 18.0 | 2196 | 0.3632 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
0.3343 | 19.0 | 2318 | 0.3636 | 0.8371 | 0.8114 | 0.7822 | 0.7943 |
0.3347 | 20.0 | 2440 | 0.3633 | 0.8396 | 0.8128 | 0.7890 | 0.7992 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
Model tree for apwic/sentiment-lora-r2a2d0.15-1
Base model
indolem/indobert-base-uncased