metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r4a2d0.05-0
results: []
sentiment-lora-r4a2d0.05-0
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3486
- Accuracy: 0.8396
- Precision: 0.8055
- Recall: 0.8115
- F1: 0.8084
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5619 | 1.0 | 122 | 0.5127 | 0.7168 | 0.6536 | 0.6446 | 0.6484 |
0.5059 | 2.0 | 244 | 0.4967 | 0.7343 | 0.6956 | 0.7220 | 0.7022 |
0.4822 | 3.0 | 366 | 0.4506 | 0.7469 | 0.7006 | 0.7159 | 0.7065 |
0.4402 | 4.0 | 488 | 0.3984 | 0.8195 | 0.7876 | 0.7623 | 0.7728 |
0.4068 | 5.0 | 610 | 0.4136 | 0.7870 | 0.7473 | 0.7718 | 0.7561 |
0.3791 | 6.0 | 732 | 0.3771 | 0.8321 | 0.7972 | 0.7987 | 0.7979 |
0.3635 | 7.0 | 854 | 0.3916 | 0.8195 | 0.7822 | 0.8048 | 0.7912 |
0.3433 | 8.0 | 976 | 0.3799 | 0.8296 | 0.7934 | 0.8019 | 0.7974 |
0.3379 | 9.0 | 1098 | 0.3714 | 0.8271 | 0.7903 | 0.8026 | 0.7959 |
0.3296 | 10.0 | 1220 | 0.3635 | 0.8371 | 0.8032 | 0.8047 | 0.8040 |
0.3105 | 11.0 | 1342 | 0.3652 | 0.8296 | 0.7933 | 0.8044 | 0.7984 |
0.3024 | 12.0 | 1464 | 0.3702 | 0.8346 | 0.7988 | 0.8180 | 0.8069 |
0.309 | 13.0 | 1586 | 0.3512 | 0.8371 | 0.8032 | 0.8047 | 0.8040 |
0.3021 | 14.0 | 1708 | 0.3505 | 0.8396 | 0.8060 | 0.8090 | 0.8075 |
0.2903 | 15.0 | 1830 | 0.3553 | 0.8421 | 0.8077 | 0.8208 | 0.8136 |
0.2834 | 16.0 | 1952 | 0.3530 | 0.8396 | 0.8046 | 0.8215 | 0.8119 |
0.2811 | 17.0 | 2074 | 0.3471 | 0.8446 | 0.8120 | 0.8151 | 0.8135 |
0.288 | 18.0 | 2196 | 0.3505 | 0.8446 | 0.8107 | 0.8226 | 0.8161 |
0.277 | 19.0 | 2318 | 0.3479 | 0.8396 | 0.8055 | 0.8115 | 0.8084 |
0.2775 | 20.0 | 2440 | 0.3486 | 0.8396 | 0.8055 | 0.8115 | 0.8084 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2