Edit model card

sentiment-lora-r4a2d0.15-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3513
  • Accuracy: 0.8471
  • Precision: 0.8147
  • Recall: 0.8193
  • F1: 0.8169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5621 1.0 122 0.5100 0.7218 0.6593 0.6482 0.6527
0.5049 2.0 244 0.4890 0.7343 0.6945 0.7195 0.7011
0.4776 3.0 366 0.4480 0.7594 0.7150 0.7323 0.7216
0.4422 4.0 488 0.4104 0.7945 0.7524 0.7446 0.7482
0.4146 5.0 610 0.4257 0.7594 0.7202 0.7473 0.7283
0.3828 6.0 732 0.3869 0.8246 0.7880 0.7909 0.7894
0.3697 7.0 854 0.3959 0.8145 0.7766 0.7988 0.7854
0.3486 8.0 976 0.3808 0.8321 0.7961 0.8087 0.8018
0.3437 9.0 1098 0.3738 0.8271 0.7904 0.8001 0.7949
0.3317 10.0 1220 0.3643 0.8471 0.8159 0.8143 0.8151
0.3114 11.0 1342 0.3683 0.8271 0.7902 0.8051 0.7968
0.3035 12.0 1464 0.3660 0.8346 0.7988 0.8155 0.8061
0.3117 13.0 1586 0.3518 0.8471 0.8167 0.8118 0.8142
0.3048 14.0 1708 0.3533 0.8446 0.8115 0.8176 0.8144
0.2916 15.0 1830 0.3570 0.8421 0.8083 0.8158 0.8119
0.2832 16.0 1952 0.3579 0.8471 0.8138 0.8243 0.8187
0.284 17.0 2074 0.3496 0.8471 0.8153 0.8168 0.8160
0.2906 18.0 2196 0.3537 0.8446 0.8111 0.8201 0.8153
0.2805 19.0 2318 0.3505 0.8496 0.8186 0.8186 0.8186
0.2815 20.0 2440 0.3513 0.8471 0.8147 0.8193 0.8169

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for apwic/sentiment-lora-r4a2d0.15-0

Finetuned
(367)
this model