metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r4a2d0.15-1
results: []
sentiment-lora-r4a2d0.15-1
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3312
- Accuracy: 0.8622
- Precision: 0.8414
- Recall: 0.8175
- F1: 0.8279
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.566 | 1.0 | 122 | 0.5206 | 0.7143 | 0.6484 | 0.6353 | 0.6403 |
0.5117 | 2.0 | 244 | 0.5062 | 0.7343 | 0.6880 | 0.7045 | 0.6939 |
0.4804 | 3.0 | 366 | 0.4667 | 0.7669 | 0.7182 | 0.7126 | 0.7152 |
0.4345 | 4.0 | 488 | 0.4350 | 0.7920 | 0.7494 | 0.7403 | 0.7445 |
0.4081 | 5.0 | 610 | 0.4337 | 0.7945 | 0.7565 | 0.7846 | 0.7661 |
0.3793 | 6.0 | 732 | 0.3923 | 0.8195 | 0.7857 | 0.7673 | 0.7753 |
0.3665 | 7.0 | 854 | 0.3765 | 0.8296 | 0.7949 | 0.7919 | 0.7934 |
0.3471 | 8.0 | 976 | 0.3681 | 0.8371 | 0.8089 | 0.7872 | 0.7966 |
0.3498 | 9.0 | 1098 | 0.3677 | 0.8321 | 0.8024 | 0.7812 | 0.7904 |
0.3282 | 10.0 | 1220 | 0.3634 | 0.8346 | 0.8074 | 0.7805 | 0.7917 |
0.3149 | 11.0 | 1342 | 0.3537 | 0.8446 | 0.8180 | 0.7976 | 0.8065 |
0.3092 | 12.0 | 1464 | 0.3529 | 0.8496 | 0.8202 | 0.8136 | 0.8167 |
0.3135 | 13.0 | 1586 | 0.3471 | 0.8521 | 0.8332 | 0.7979 | 0.8122 |
0.3103 | 14.0 | 1708 | 0.3427 | 0.8622 | 0.8430 | 0.8150 | 0.8269 |
0.2974 | 15.0 | 1830 | 0.3372 | 0.8622 | 0.8385 | 0.8225 | 0.8298 |
0.2905 | 16.0 | 1952 | 0.3345 | 0.8697 | 0.8488 | 0.8303 | 0.8386 |
0.2895 | 17.0 | 2074 | 0.3339 | 0.8622 | 0.8430 | 0.8150 | 0.8269 |
0.2922 | 18.0 | 2196 | 0.3319 | 0.8697 | 0.8488 | 0.8303 | 0.8386 |
0.2843 | 19.0 | 2318 | 0.3319 | 0.8622 | 0.8430 | 0.8150 | 0.8269 |
0.287 | 20.0 | 2440 | 0.3312 | 0.8622 | 0.8414 | 0.8175 | 0.8279 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2