sentiment-lora-r8a2d0.1-1
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3035
- Accuracy: 0.8747
- Precision: 0.8523
- Recall: 0.8413
- F1: 0.8465
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5655 | 1.0 | 122 | 0.5179 | 0.7243 | 0.6623 | 0.6499 | 0.6548 |
0.5048 | 2.0 | 244 | 0.4926 | 0.7519 | 0.7079 | 0.7270 | 0.7147 |
0.4529 | 3.0 | 366 | 0.4301 | 0.7995 | 0.7581 | 0.7606 | 0.7593 |
0.393 | 4.0 | 488 | 0.3863 | 0.8221 | 0.7871 | 0.7766 | 0.7814 |
0.3754 | 5.0 | 610 | 0.3868 | 0.8246 | 0.7892 | 0.8209 | 0.8003 |
0.3455 | 6.0 | 732 | 0.3605 | 0.8446 | 0.8126 | 0.8126 | 0.8126 |
0.3344 | 7.0 | 854 | 0.3396 | 0.8546 | 0.8263 | 0.8196 | 0.8229 |
0.3157 | 8.0 | 976 | 0.3319 | 0.8672 | 0.8436 | 0.8310 | 0.8369 |
0.3076 | 9.0 | 1098 | 0.3273 | 0.8546 | 0.8284 | 0.8146 | 0.8210 |
0.2948 | 10.0 | 1220 | 0.3238 | 0.8747 | 0.8552 | 0.8363 | 0.8448 |
0.2737 | 11.0 | 1342 | 0.3199 | 0.8697 | 0.8474 | 0.8328 | 0.8395 |
0.2741 | 12.0 | 1464 | 0.3190 | 0.8596 | 0.8299 | 0.8332 | 0.8315 |
0.275 | 13.0 | 1586 | 0.3146 | 0.8772 | 0.8628 | 0.8331 | 0.8458 |
0.2736 | 14.0 | 1708 | 0.3104 | 0.8697 | 0.8460 | 0.8353 | 0.8404 |
0.263 | 15.0 | 1830 | 0.3112 | 0.8672 | 0.8393 | 0.8410 | 0.8402 |
0.2583 | 16.0 | 1952 | 0.3086 | 0.8722 | 0.8453 | 0.8471 | 0.8462 |
0.2544 | 17.0 | 2074 | 0.3065 | 0.8722 | 0.8512 | 0.8346 | 0.8422 |
0.2594 | 18.0 | 2196 | 0.3056 | 0.8697 | 0.8449 | 0.8378 | 0.8412 |
0.256 | 19.0 | 2318 | 0.3043 | 0.8722 | 0.8512 | 0.8346 | 0.8422 |
0.2515 | 20.0 | 2440 | 0.3035 | 0.8747 | 0.8523 | 0.8413 | 0.8465 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
Model tree for apwic/sentiment-lora-r8a2d0.1-1
Base model
indolem/indobert-base-uncased