sentiment-pt-pl10-1 / README.md
apwic's picture
End of training
e58a69a verified
|
raw
history blame
3.32 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-pt-pl10-1
    results: []

sentiment-pt-pl10-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3011
  • Accuracy: 0.8972
  • Precision: 0.8754
  • Recall: 0.8773
  • F1: 0.8764

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5535 1.0 122 0.5078 0.7268 0.6606 0.6242 0.6327
0.4682 2.0 244 0.4185 0.8170 0.7798 0.7756 0.7776
0.3849 3.0 366 0.3809 0.8170 0.7968 0.7380 0.7573
0.3127 4.0 488 0.3280 0.8571 0.8266 0.8314 0.8289
0.2869 5.0 610 0.3169 0.8622 0.8333 0.8350 0.8341
0.274 6.0 732 0.3218 0.8772 0.8467 0.8731 0.8576
0.2539 7.0 854 0.3038 0.8672 0.8378 0.8460 0.8417
0.2286 8.0 976 0.3202 0.8672 0.8479 0.8235 0.8342
0.2249 9.0 1098 0.2973 0.8872 0.8606 0.8727 0.8662
0.2083 10.0 1220 0.3128 0.8722 0.8602 0.8221 0.8377
0.1935 11.0 1342 0.2957 0.8922 0.8665 0.8788 0.8722
0.1859 12.0 1464 0.2869 0.8822 0.8548 0.8667 0.8603
0.1735 13.0 1586 0.3061 0.8797 0.8633 0.8399 0.8502
0.1804 14.0 1708 0.2955 0.8897 0.8632 0.8770 0.8695
0.1628 15.0 1830 0.2973 0.8972 0.8767 0.8748 0.8757
0.1619 16.0 1952 0.3023 0.8897 0.8618 0.8820 0.8707
0.1514 17.0 2074 0.2997 0.8972 0.8732 0.8823 0.8776
0.1503 18.0 2196 0.3002 0.8947 0.8718 0.8755 0.8737
0.154 19.0 2318 0.3031 0.8947 0.8730 0.8730 0.8730
0.1408 20.0 2440 0.3011 0.8972 0.8754 0.8773 0.8764

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2