sentiment-pt-pl10-3 / README.md
apwic's picture
End of training
305daf6 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-pt-pl10-3
    results: []

sentiment-pt-pl10-3

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3389
  • Accuracy: 0.8822
  • Precision: 0.8574
  • Recall: 0.8592
  • F1: 0.8583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5509 1.0 122 0.4983 0.7393 0.6801 0.6406 0.6507
0.4511 2.0 244 0.4377 0.7769 0.7547 0.8022 0.7593
0.368 3.0 366 0.3260 0.8571 0.8381 0.8064 0.8196
0.3019 4.0 488 0.3036 0.8647 0.8410 0.8267 0.8333
0.2668 5.0 610 0.3192 0.8672 0.8372 0.8485 0.8425
0.2471 6.0 732 0.3059 0.8622 0.8305 0.8475 0.8380
0.2422 7.0 854 0.2950 0.8747 0.8451 0.8613 0.8524
0.2258 8.0 976 0.2928 0.8722 0.8463 0.8446 0.8454
0.2054 9.0 1098 0.3049 0.8797 0.8572 0.8499 0.8534
0.2009 10.0 1220 0.3013 0.8747 0.8488 0.8488 0.8488
0.1755 11.0 1342 0.3070 0.8822 0.8574 0.8592 0.8583
0.1821 12.0 1464 0.2995 0.8822 0.8596 0.8542 0.8568
0.1652 13.0 1586 0.3272 0.8847 0.8553 0.8809 0.8660
0.1566 14.0 1708 0.3336 0.8897 0.8609 0.8870 0.8719
0.1634 15.0 1830 0.3150 0.8847 0.8589 0.8659 0.8623
0.1496 16.0 1952 0.3321 0.8922 0.8706 0.8687 0.8697
0.1355 17.0 2074 0.3276 0.8847 0.8599 0.8634 0.8616
0.1477 18.0 2196 0.3365 0.8797 0.8530 0.8599 0.8563
0.1317 19.0 2318 0.3385 0.8822 0.8574 0.8592 0.8583
0.1267 20.0 2440 0.3389 0.8822 0.8574 0.8592 0.8583

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2