sentiment-pt-pl30-1 / README.md
apwic's picture
End of training
02456bb verified
|
raw
history blame
3.32 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-pt-pl30-1
    results: []

sentiment-pt-pl30-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3434
  • Accuracy: 0.8722
  • Precision: 0.8485
  • Recall: 0.8396
  • F1: 0.8438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5472 1.0 122 0.4993 0.7343 0.6726 0.6245 0.6339
0.4484 2.0 244 0.4157 0.7945 0.7655 0.8096 0.7744
0.3338 3.0 366 0.3279 0.8596 0.8510 0.7982 0.8179
0.2902 4.0 488 0.3037 0.8672 0.8449 0.8285 0.8360
0.2756 5.0 610 0.2922 0.8747 0.8499 0.8463 0.8481
0.2514 6.0 732 0.3059 0.8672 0.8359 0.8560 0.8446
0.2338 7.0 854 0.2970 0.8596 0.8278 0.8432 0.8347
0.2205 8.0 976 0.2967 0.8847 0.8784 0.8359 0.8531
0.2153 9.0 1098 0.2982 0.8672 0.8393 0.8410 0.8402
0.1969 10.0 1220 0.2943 0.8672 0.8423 0.8335 0.8377
0.185 11.0 1342 0.2973 0.8647 0.8359 0.8392 0.8376
0.1733 12.0 1464 0.3074 0.8672 0.8423 0.8335 0.8377
0.1616 13.0 1586 0.3186 0.8697 0.8460 0.8353 0.8404
0.16 14.0 1708 0.3222 0.8596 0.8278 0.8432 0.8347
0.1494 15.0 1830 0.3260 0.8747 0.8523 0.8413 0.8465
0.1501 16.0 1952 0.3233 0.8647 0.8359 0.8392 0.8376
0.1468 17.0 2074 0.3296 0.8672 0.8412 0.8360 0.8385
0.1423 18.0 2196 0.3367 0.8647 0.8398 0.8292 0.8342
0.1327 19.0 2318 0.3395 0.8697 0.8438 0.8403 0.8420
0.1413 20.0 2440 0.3434 0.8722 0.8485 0.8396 0.8438

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2