sentiment-pt-pl30-1 / README.md
apwic's picture
End of training
ff15080 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-pt-pl30-1
    results: []

sentiment-pt-pl30-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3019
  • Accuracy: 0.8647
  • Precision: 0.8377
  • Recall: 0.8342
  • F1: 0.8359

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5413 1.0 122 0.4949 0.7368 0.6763 0.6438 0.6531
0.4306 2.0 244 0.3954 0.8246 0.7902 0.8259 0.8019
0.3344 3.0 366 0.3397 0.8521 0.8370 0.7929 0.8099
0.2925 4.0 488 0.3211 0.8471 0.8264 0.7918 0.8058
0.2794 5.0 610 0.3064 0.8622 0.8314 0.8425 0.8365
0.2464 6.0 732 0.2857 0.8672 0.8356 0.8585 0.8453
0.2332 7.0 854 0.2846 0.8772 0.8496 0.8581 0.8537
0.2216 8.0 976 0.2906 0.8596 0.8360 0.8182 0.8262
0.2123 9.0 1098 0.2781 0.8697 0.8488 0.8303 0.8386
0.1911 10.0 1220 0.2896 0.8722 0.8562 0.8271 0.8395
0.1878 11.0 1342 0.2814 0.8747 0.8479 0.8513 0.8496
0.1797 12.0 1464 0.2830 0.8672 0.8402 0.8385 0.8394
0.1746 13.0 1586 0.2900 0.8672 0.8496 0.8210 0.8332
0.1677 14.0 1708 0.2798 0.8697 0.8411 0.8478 0.8443
0.1585 15.0 1830 0.2823 0.8722 0.8437 0.8521 0.8477
0.1575 16.0 1952 0.2816 0.8722 0.8413 0.8646 0.8511
0.146 17.0 2074 0.3027 0.8647 0.8377 0.8342 0.8359
0.1368 18.0 2196 0.2961 0.8672 0.8372 0.8485 0.8425
0.133 19.0 2318 0.3024 0.8622 0.8342 0.8325 0.8333
0.1377 20.0 2440 0.3019 0.8647 0.8377 0.8342 0.8359

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2