metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-pt-pl5-1
results: []
sentiment-pt-pl5-1
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2868
- Accuracy: 0.8847
- Precision: 0.8599
- Recall: 0.8634
- F1: 0.8616
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5526 | 1.0 | 122 | 0.5135 | 0.7118 | 0.6438 | 0.6286 | 0.6339 |
0.4696 | 2.0 | 244 | 0.4522 | 0.7569 | 0.7328 | 0.7755 | 0.7369 |
0.3867 | 3.0 | 366 | 0.3466 | 0.8371 | 0.8297 | 0.7597 | 0.7824 |
0.3349 | 4.0 | 488 | 0.3128 | 0.8546 | 0.8395 | 0.7971 | 0.8137 |
0.2998 | 5.0 | 610 | 0.2932 | 0.8596 | 0.8293 | 0.8357 | 0.8324 |
0.2787 | 6.0 | 732 | 0.2855 | 0.8697 | 0.8419 | 0.8453 | 0.8436 |
0.2551 | 7.0 | 854 | 0.2898 | 0.8747 | 0.8438 | 0.8713 | 0.8550 |
0.2496 | 8.0 | 976 | 0.2936 | 0.8697 | 0.8653 | 0.8103 | 0.8309 |
0.2347 | 9.0 | 1098 | 0.2755 | 0.8847 | 0.8599 | 0.8634 | 0.8616 |
0.2199 | 10.0 | 1220 | 0.3038 | 0.8722 | 0.8675 | 0.8146 | 0.8347 |
0.2089 | 11.0 | 1342 | 0.2695 | 0.8822 | 0.8574 | 0.8592 | 0.8583 |
0.1992 | 12.0 | 1464 | 0.2710 | 0.8747 | 0.8488 | 0.8488 | 0.8488 |
0.1841 | 13.0 | 1586 | 0.2807 | 0.8722 | 0.8512 | 0.8346 | 0.8422 |
0.1808 | 14.0 | 1708 | 0.2822 | 0.8822 | 0.8548 | 0.8667 | 0.8603 |
0.1677 | 15.0 | 1830 | 0.2841 | 0.8747 | 0.8479 | 0.8513 | 0.8496 |
0.1683 | 16.0 | 1952 | 0.2821 | 0.8772 | 0.8496 | 0.8581 | 0.8537 |
0.1748 | 17.0 | 2074 | 0.2824 | 0.8797 | 0.8572 | 0.8499 | 0.8534 |
0.1566 | 18.0 | 2196 | 0.2847 | 0.8872 | 0.8606 | 0.8727 | 0.8662 |
0.1522 | 19.0 | 2318 | 0.2880 | 0.8822 | 0.8574 | 0.8592 | 0.8583 |
0.1566 | 20.0 | 2440 | 0.2868 | 0.8847 | 0.8599 | 0.8634 | 0.8616 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1