sentiment-pt-pl5-1 / README.md
apwic's picture
End of training
a851e70 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-pt-pl5-1
    results: []

sentiment-pt-pl5-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2868
  • Accuracy: 0.8847
  • Precision: 0.8599
  • Recall: 0.8634
  • F1: 0.8616

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5526 1.0 122 0.5135 0.7118 0.6438 0.6286 0.6339
0.4696 2.0 244 0.4522 0.7569 0.7328 0.7755 0.7369
0.3867 3.0 366 0.3466 0.8371 0.8297 0.7597 0.7824
0.3349 4.0 488 0.3128 0.8546 0.8395 0.7971 0.8137
0.2998 5.0 610 0.2932 0.8596 0.8293 0.8357 0.8324
0.2787 6.0 732 0.2855 0.8697 0.8419 0.8453 0.8436
0.2551 7.0 854 0.2898 0.8747 0.8438 0.8713 0.8550
0.2496 8.0 976 0.2936 0.8697 0.8653 0.8103 0.8309
0.2347 9.0 1098 0.2755 0.8847 0.8599 0.8634 0.8616
0.2199 10.0 1220 0.3038 0.8722 0.8675 0.8146 0.8347
0.2089 11.0 1342 0.2695 0.8822 0.8574 0.8592 0.8583
0.1992 12.0 1464 0.2710 0.8747 0.8488 0.8488 0.8488
0.1841 13.0 1586 0.2807 0.8722 0.8512 0.8346 0.8422
0.1808 14.0 1708 0.2822 0.8822 0.8548 0.8667 0.8603
0.1677 15.0 1830 0.2841 0.8747 0.8479 0.8513 0.8496
0.1683 16.0 1952 0.2821 0.8772 0.8496 0.8581 0.8537
0.1748 17.0 2074 0.2824 0.8797 0.8572 0.8499 0.8534
0.1566 18.0 2196 0.2847 0.8872 0.8606 0.8727 0.8662
0.1522 19.0 2318 0.2880 0.8822 0.8574 0.8592 0.8583
0.1566 20.0 2440 0.2868 0.8847 0.8599 0.8634 0.8616

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1