sentiment-seq_bn-rf64-4
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3252
- Accuracy: 0.8496
- Precision: 0.8202
- Recall: 0.8136
- F1: 0.8167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5579 | 1.0 | 122 | 0.5390 | 0.7093 | 0.6626 | 0.6793 | 0.6678 |
0.5043 | 2.0 | 244 | 0.4835 | 0.7644 | 0.7516 | 0.6308 | 0.6425 |
0.4819 | 3.0 | 366 | 0.4585 | 0.7769 | 0.7322 | 0.7047 | 0.7150 |
0.4474 | 4.0 | 488 | 0.4587 | 0.7820 | 0.7399 | 0.7582 | 0.7472 |
0.4336 | 5.0 | 610 | 0.4243 | 0.8070 | 0.7756 | 0.7360 | 0.7504 |
0.4036 | 6.0 | 732 | 0.3990 | 0.8221 | 0.7846 | 0.7941 | 0.7890 |
0.3871 | 7.0 | 854 | 0.3843 | 0.8346 | 0.8074 | 0.7805 | 0.7917 |
0.3704 | 8.0 | 976 | 0.3781 | 0.8371 | 0.8270 | 0.7622 | 0.7839 |
0.3563 | 9.0 | 1098 | 0.3728 | 0.8446 | 0.8343 | 0.7751 | 0.7959 |
0.34 | 10.0 | 1220 | 0.3545 | 0.8596 | 0.8360 | 0.8182 | 0.8262 |
0.3394 | 11.0 | 1342 | 0.3446 | 0.8571 | 0.8310 | 0.8189 | 0.8245 |
0.3182 | 12.0 | 1464 | 0.3411 | 0.8596 | 0.8389 | 0.8132 | 0.8243 |
0.3226 | 13.0 | 1586 | 0.3353 | 0.8546 | 0.8254 | 0.8221 | 0.8238 |
0.3181 | 14.0 | 1708 | 0.3369 | 0.8546 | 0.8228 | 0.8322 | 0.8272 |
0.3044 | 15.0 | 1830 | 0.3312 | 0.8571 | 0.8289 | 0.8239 | 0.8264 |
0.3038 | 16.0 | 1952 | 0.3287 | 0.8571 | 0.8273 | 0.8289 | 0.8281 |
0.3033 | 17.0 | 2074 | 0.3268 | 0.8596 | 0.8293 | 0.8357 | 0.8324 |
0.3018 | 18.0 | 2196 | 0.3251 | 0.8571 | 0.8266 | 0.8314 | 0.8289 |
0.2955 | 19.0 | 2318 | 0.3253 | 0.8571 | 0.8273 | 0.8289 | 0.8281 |
0.2999 | 20.0 | 2440 | 0.3252 | 0.8496 | 0.8202 | 0.8136 | 0.8167 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
Model tree for apwic/sentiment-seq_bn-rf64-4
Base model
indolem/indobert-base-uncased