sentiment-unipelt-1
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3288
- Accuracy: 0.8872
- Precision: 0.8606
- Recall: 0.8727
- F1: 0.8662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5528 | 1.0 | 122 | 0.5051 | 0.7168 | 0.6521 | 0.6396 | 0.6444 |
0.4431 | 2.0 | 244 | 0.4333 | 0.7970 | 0.7711 | 0.8189 | 0.7789 |
0.3491 | 3.0 | 366 | 0.3269 | 0.8672 | 0.8579 | 0.8110 | 0.8293 |
0.2886 | 4.0 | 488 | 0.2995 | 0.8722 | 0.8498 | 0.8371 | 0.8430 |
0.2671 | 5.0 | 610 | 0.2967 | 0.8697 | 0.8428 | 0.8428 | 0.8428 |
0.2481 | 6.0 | 732 | 0.3346 | 0.8546 | 0.8230 | 0.8647 | 0.8365 |
0.2339 | 7.0 | 854 | 0.2965 | 0.8672 | 0.8372 | 0.8485 | 0.8425 |
0.217 | 8.0 | 976 | 0.2929 | 0.8772 | 0.8576 | 0.8406 | 0.8484 |
0.1984 | 9.0 | 1098 | 0.2778 | 0.8797 | 0.8572 | 0.8499 | 0.8534 |
0.1937 | 10.0 | 1220 | 0.2905 | 0.8772 | 0.8628 | 0.8331 | 0.8458 |
0.1734 | 11.0 | 1342 | 0.2919 | 0.8872 | 0.8624 | 0.8677 | 0.8650 |
0.1561 | 12.0 | 1464 | 0.3126 | 0.8797 | 0.8539 | 0.8574 | 0.8556 |
0.1579 | 13.0 | 1586 | 0.3165 | 0.8822 | 0.8610 | 0.8517 | 0.8561 |
0.1459 | 14.0 | 1708 | 0.3108 | 0.8972 | 0.8715 | 0.8873 | 0.8787 |
0.1399 | 15.0 | 1830 | 0.3192 | 0.8922 | 0.8657 | 0.8813 | 0.8728 |
0.1377 | 16.0 | 1952 | 0.3200 | 0.8847 | 0.8567 | 0.8734 | 0.8642 |
0.1259 | 17.0 | 2074 | 0.3303 | 0.8847 | 0.8589 | 0.8659 | 0.8623 |
0.1293 | 18.0 | 2196 | 0.3265 | 0.8922 | 0.8657 | 0.8813 | 0.8728 |
0.1187 | 19.0 | 2318 | 0.3305 | 0.8847 | 0.8589 | 0.8659 | 0.8623 |
0.1302 | 20.0 | 2440 | 0.3288 | 0.8872 | 0.8606 | 0.8727 | 0.8662 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
Model tree for apwic/sentiment-unipelt-1
Base model
indolem/indobert-base-uncased