sentiment-unipelt / README.md
apwic's picture
Model save
f9b7a51 verified
|
raw
history blame
3.3 kB
---
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-unipelt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-unipelt
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2928
- Accuracy: 0.9023
- Precision: 0.8842
- Recall: 0.8783
- F1: 0.8812
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5535 | 1.0 | 122 | 0.4992 | 0.7293 | 0.6646 | 0.6285 | 0.6373 |
| 0.444 | 2.0 | 244 | 0.4053 | 0.8170 | 0.7847 | 0.8256 | 0.7961 |
| 0.3464 | 3.0 | 366 | 0.3425 | 0.8421 | 0.8345 | 0.7683 | 0.7905 |
| 0.2852 | 4.0 | 488 | 0.3136 | 0.8722 | 0.8445 | 0.8496 | 0.8470 |
| 0.2608 | 5.0 | 610 | 0.3060 | 0.8722 | 0.8445 | 0.8496 | 0.8470 |
| 0.2415 | 6.0 | 732 | 0.3100 | 0.8647 | 0.8325 | 0.8642 | 0.8447 |
| 0.2329 | 7.0 | 854 | 0.2860 | 0.8847 | 0.8567 | 0.8734 | 0.8642 |
| 0.199 | 8.0 | 976 | 0.2879 | 0.8872 | 0.8672 | 0.8577 | 0.8622 |
| 0.1939 | 9.0 | 1098 | 0.2826 | 0.8897 | 0.8659 | 0.8695 | 0.8676 |
| 0.1806 | 10.0 | 1220 | 0.2982 | 0.8797 | 0.8795 | 0.8224 | 0.8439 |
| 0.1674 | 11.0 | 1342 | 0.2735 | 0.8947 | 0.8730 | 0.8730 | 0.8730 |
| 0.1553 | 12.0 | 1464 | 0.2753 | 0.8947 | 0.8757 | 0.8680 | 0.8717 |
| 0.1431 | 13.0 | 1586 | 0.2937 | 0.8922 | 0.8785 | 0.8562 | 0.8662 |
| 0.1417 | 14.0 | 1708 | 0.2911 | 0.9073 | 0.8823 | 0.9019 | 0.8910 |
| 0.1236 | 15.0 | 1830 | 0.2956 | 0.9023 | 0.8828 | 0.8808 | 0.8818 |
| 0.1304 | 16.0 | 1952 | 0.3011 | 0.9023 | 0.8773 | 0.8933 | 0.8846 |
| 0.1164 | 17.0 | 2074 | 0.2943 | 0.8997 | 0.8778 | 0.8816 | 0.8797 |
| 0.1144 | 18.0 | 2196 | 0.2937 | 0.8972 | 0.8732 | 0.8823 | 0.8776 |
| 0.1198 | 19.0 | 2318 | 0.2985 | 0.8972 | 0.8812 | 0.8673 | 0.8738 |
| 0.1104 | 20.0 | 2440 | 0.2928 | 0.9023 | 0.8842 | 0.8783 | 0.8812 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2