metadata
language:
- id
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: summarization-lora-2
results: []
summarization-lora-2
This model is a fine-tuned version of LazarusNLP/IndoNanoT5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4798
- Rouge1: 0.395
- Rouge2: 0.0
- Rougel: 0.3935
- Rougelsum: 0.3933
- Gen Len: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.827 | 1.0 | 894 | 0.5171 | 0.6517 | 0.0 | 0.6531 | 0.6496 | 1.0 |
0.6257 | 2.0 | 1788 | 0.4944 | 0.6472 | 0.0 | 0.6472 | 0.6469 | 1.0 |
0.5832 | 3.0 | 2682 | 0.4848 | 0.6329 | 0.0 | 0.6335 | 0.634 | 1.0 |
0.5581 | 4.0 | 3576 | 0.4824 | 0.6575 | 0.0 | 0.6562 | 0.6576 | 1.0 |
0.5411 | 5.0 | 4470 | 0.4798 | 0.6568 | 0.0 | 0.6564 | 0.6586 | 1.0 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1