summarization-seq_bn-2
This model is a fine-tuned version of LazarusNLP/IndoNanoT5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4666
- Rouge1: 0.4096
- Rouge2: 0.0
- Rougel: 0.4093
- Rougelsum: 0.4102
- Gen Len: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.781 | 1.0 | 894 | 0.5142 | 0.6277 | 0.0 | 0.6309 | 0.628 | 1.0 |
0.6103 | 2.0 | 1788 | 0.4834 | 0.6516 | 0.0 | 0.6528 | 0.6502 | 1.0 |
0.5612 | 3.0 | 2682 | 0.4769 | 0.6537 | 0.0 | 0.654 | 0.6571 | 1.0 |
0.5242 | 4.0 | 3576 | 0.4704 | 0.6285 | 0.0 | 0.6294 | 0.6312 | 1.0 |
0.4933 | 5.0 | 4470 | 0.4666 | 0.6446 | 0.0 | 0.6437 | 0.6455 | 1.0 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
Model tree for apwic/summarization-seq_bn-2
Base model
LazarusNLP/IndoNanoT5-base