Fixed tokenizer.json, so it is equal with LLama-3.1-8B-Instruct's tokenizer.json
#5
by
Joseph717171
- opened
README.md
CHANGED
@@ -1,106 +1,10 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
license: llama3
|
5 |
-
library_name: transformers
|
6 |
-
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
7 |
datasets:
|
8 |
- arcee-ai/EvolKit-20k
|
9 |
-
|
10 |
-
-
|
11 |
-
|
12 |
-
- task:
|
13 |
-
type: text-generation
|
14 |
-
name: Text Generation
|
15 |
-
dataset:
|
16 |
-
name: IFEval (0-Shot)
|
17 |
-
type: HuggingFaceH4/ifeval
|
18 |
-
args:
|
19 |
-
num_few_shot: 0
|
20 |
-
metrics:
|
21 |
-
- type: inst_level_strict_acc and prompt_level_strict_acc
|
22 |
-
value: 80.17
|
23 |
-
name: strict accuracy
|
24 |
-
source:
|
25 |
-
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
|
26 |
-
name: Open LLM Leaderboard
|
27 |
-
- task:
|
28 |
-
type: text-generation
|
29 |
-
name: Text Generation
|
30 |
-
dataset:
|
31 |
-
name: BBH (3-Shot)
|
32 |
-
type: BBH
|
33 |
-
args:
|
34 |
-
num_few_shot: 3
|
35 |
-
metrics:
|
36 |
-
- type: acc_norm
|
37 |
-
value: 31.57
|
38 |
-
name: normalized accuracy
|
39 |
-
source:
|
40 |
-
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
|
41 |
-
name: Open LLM Leaderboard
|
42 |
-
- task:
|
43 |
-
type: text-generation
|
44 |
-
name: Text Generation
|
45 |
-
dataset:
|
46 |
-
name: MATH Lvl 5 (4-Shot)
|
47 |
-
type: hendrycks/competition_math
|
48 |
-
args:
|
49 |
-
num_few_shot: 4
|
50 |
-
metrics:
|
51 |
-
- type: exact_match
|
52 |
-
value: 15.48
|
53 |
-
name: exact match
|
54 |
-
source:
|
55 |
-
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
|
56 |
-
name: Open LLM Leaderboard
|
57 |
-
- task:
|
58 |
-
type: text-generation
|
59 |
-
name: Text Generation
|
60 |
-
dataset:
|
61 |
-
name: GPQA (0-shot)
|
62 |
-
type: Idavidrein/gpqa
|
63 |
-
args:
|
64 |
-
num_few_shot: 0
|
65 |
-
metrics:
|
66 |
-
- type: acc_norm
|
67 |
-
value: 7.49
|
68 |
-
name: acc_norm
|
69 |
-
source:
|
70 |
-
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
|
71 |
-
name: Open LLM Leaderboard
|
72 |
-
- task:
|
73 |
-
type: text-generation
|
74 |
-
name: Text Generation
|
75 |
-
dataset:
|
76 |
-
name: MuSR (0-shot)
|
77 |
-
type: TAUR-Lab/MuSR
|
78 |
-
args:
|
79 |
-
num_few_shot: 0
|
80 |
-
metrics:
|
81 |
-
- type: acc_norm
|
82 |
-
value: 11.67
|
83 |
-
name: acc_norm
|
84 |
-
source:
|
85 |
-
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
|
86 |
-
name: Open LLM Leaderboard
|
87 |
-
- task:
|
88 |
-
type: text-generation
|
89 |
-
name: Text Generation
|
90 |
-
dataset:
|
91 |
-
name: MMLU-PRO (5-shot)
|
92 |
-
type: TIGER-Lab/MMLU-Pro
|
93 |
-
config: main
|
94 |
-
split: test
|
95 |
-
args:
|
96 |
-
num_few_shot: 5
|
97 |
-
metrics:
|
98 |
-
- type: acc
|
99 |
-
value: 31.97
|
100 |
-
name: accuracy
|
101 |
-
source:
|
102 |
-
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
|
103 |
-
name: Open LLM Leaderboard
|
104 |
---
|
105 |
<div align="center">
|
106 |
<img src="https://i.ibb.co/r072p7j/eopi-ZVu-SQ0-G-Cav78-Byq-Tg.png" alt="Llama-3.1-SuperNova-Lite" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
|
@@ -114,16 +18,18 @@ The model was trained using a state-of-the-art distillation pipeline and an inst
|
|
114 |
|
115 |
Llama-3.1-SuperNova-Lite excels in both benchmark performance and real-world applications, providing the power of large-scale models in a more compact, efficient form ideal for organizations seeking high performance with reduced resource requirements.
|
116 |
|
117 |
-
#
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
|
121 |
-
|-------------------|----:|
|
122 |
-
|Avg. |29.73|
|
123 |
-
|IFEval (0-Shot) |80.17|
|
124 |
-
|BBH (3-Shot) |31.57|
|
125 |
-
|MATH Lvl 5 (4-Shot)|15.48|
|
126 |
-
|GPQA (0-shot) | 7.49|
|
127 |
-
|MuSR (0-shot) |11.67|
|
128 |
-
|MMLU-PRO (5-shot) |31.97|
|
129 |
|
|
|
|
|
|
1 |
---
|
|
|
|
|
2 |
license: llama3
|
|
|
|
|
3 |
datasets:
|
4 |
- arcee-ai/EvolKit-20k
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
<div align="center">
|
10 |
<img src="https://i.ibb.co/r072p7j/eopi-ZVu-SQ0-G-Cav78-Byq-Tg.png" alt="Llama-3.1-SuperNova-Lite" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
|
|
|
18 |
|
19 |
Llama-3.1-SuperNova-Lite excels in both benchmark performance and real-world applications, providing the power of large-scale models in a more compact, efficient form ideal for organizations seeking high performance with reduced resource requirements.
|
20 |
|
21 |
+
# Evaluations
|
22 |
+
We will be submitting this model to the OpenLLM Leaderboard for a more conclusive benchmark - but here are our internal benchmarks using the main branch of lm evaluation harness:
|
23 |
+
|
24 |
+
| Benchmark | SuperNova-Lite | Llama-3.1-8b-Instruct |
|
25 |
+
|-------------|----------------|----------------------|
|
26 |
+
| IF_Eval | 81.1 | 77.4 |
|
27 |
+
| MMLU Pro | 38.7 | 37.7 |
|
28 |
+
| TruthfulQA | 64.4 | 55.0 |
|
29 |
+
| BBH | 51.1 | 50.6 |
|
30 |
+
| GPQA | 31.2 | 29.02 |
|
31 |
|
32 |
+
The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite/blob/main/eval.sh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# note
|
35 |
+
This readme will be edited regularly on September 10, 2024 (the day of release). After the final readme is in place we will remove this note.
|