whisper-tiny-en / README.md
arielcerdap's picture
End of training
57b4878 verified
|
raw
history blame
2.38 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-en
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.33766233766233766

whisper-tiny-en

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8729
  • Wer Ortho: 0.3344
  • Wer: 0.3377

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0006 17.8571 500 0.6617 0.3251 0.3264
0.0002 35.7143 1000 0.7217 0.3257 0.3270
0.0001 53.5714 1500 0.7577 0.3226 0.3247
0.0001 71.4286 2000 0.7870 0.3337 0.3347
0.0 89.2857 2500 0.8109 0.3325 0.3341
0.0 107.1429 3000 0.8329 0.3356 0.3377
0.0 125.0 3500 0.8529 0.3344 0.3371
0.0 142.8571 4000 0.8729 0.3344 0.3377

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1