metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- au_tex_tification
metrics:
- accuracy
model-index:
- name: roberta-base-autextification
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: au_tex_tification
type: au_tex_tification
config: detection_en
split: train
args: detection_en
metrics:
- name: Accuracy
type: accuracy
value: 0.6296720410406742
roberta-base-autextification
This model is a fine-tuned version of roberta-base on the au_tex_tification dataset. It achieves the following results on the evaluation set:
- Loss: 1.3253
- Accuracy: 0.6297
- Roc Auc: 0.8980
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc |
---|---|---|---|---|---|
0.4844 | 1.0 | 3385 | 0.2904 | 0.9057 | 0.9745 |
0.1311 | 2.0 | 6770 | 0.4360 | 0.8997 | 0.9817 |
0.1576 | 3.0 | 10155 | 0.5514 | 0.9088 | 0.9837 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1