Edit model card

Coreference resolution model for the Ukrainian language

The coreference resolution model for the Ukrainian language was trained on the silver Ukrainian coreference dataset using the F-Coref library. The model was trained on top of the XML-Roberta-base model.

Model Details

Model Description

Model Sources

Out-of-Scope Use

According to the metrics retrieved from the evaluation dataset, the model is more precision-oriented. Also, there is a high level of granularity of mentions. E.g., the mention "Головний виконавчий директор Андрій Сидоренко" can be divided into the following coreferent groups: ["Головний виконавчий директор Андрій Сидоренко", "Головний виконавчий директор", "Андрій Сидоренко"]. Such a feature can also be used to extract some positions, roles, or other features of entities in the text.

How to Get Started with the Model

Use the code below to get started with the model.

from fastcoref import FCoref
import spacy

nlp = spacy.load('uk_core_news_md')

model_path = "artemkramov/coref-ua"
model = FCoref(model_name_or_path=model_path, device='cuda:0', nlp=nlp)

preds = model.predict(
   texts=["""Мій друг дав мені свою машину та ключі до неї; крім того, він дав мені його книгу. Я з радістю її читаю."""]
)

preds[0].get_clusters(as_strings=False)
> [[(0, 3), (13, 17), (66, 70), (83, 84)],
 [(0, 8), (18, 22), (58, 61), (71, 75)],
 [(18, 29), (42, 45)],
 [(71, 81), (95, 97)]]

preds[0].get_clusters()
> [['Мій', 'мені', 'мені', 'Я'], ['Мій друг', 'свою', 'він', 'його'], ['свою машину', 'неї'], ['його книгу', 'її']]

preds[0].get_logit(
   span_i=(13, 17), span_j=(42, 45)
)

> -6.867196

Training Details

Training Data

The model was trained on the silver coreference resolution dataset: https://huggingface.co/datasets/artemkramov/coreference-dataset-ua.

Evaluation

Metrics

Two types of metrics were considered: mention-based and the coreference resolution metrics themselves.

Mention-based metrics:

  • mention precision
  • mention recall
  • mention F1

Coreference resolution metrics were calculated as the average values across the following metrics: MUC, BCubed, CEAFE:

  • coreference precision
  • coreference recall
  • coreference F1

Results

The metrics for the validation dataset:

Metric Value
Mention precision 0.850
Mention recall 0.798
Mention F1 0.824
Coreference precision 0.758
Coreference recall 0.706
Coreference F1 0.731

Model Card Authors

Artem Kramov (https://www.linkedin.com/in/artem-kramov-0b3731100/), Andrii Kursin ([email protected])

Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train artemkramov/coref-ua

Space using artemkramov/coref-ua 1

Evaluation results

  • Mean F1 measure of MUC, BCubed, and CEAFE on Silver Ukrainian Coreference Resolution Dataset
    self-reported
    0.731