arubenruben
commited on
Commit
•
a8437dd
1
Parent(s):
66ca236
Update deploy_pipeline.py
Browse files- deploy_pipeline.py +69 -0
deploy_pipeline.py
CHANGED
@@ -1,3 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class TokenizeAndAlignLabelsStep():
|
2 |
|
3 |
# Adapted From : https://huggingface.co/docs/transformers/tasks/token_classification
|
@@ -29,6 +49,55 @@ class TokenizeAndAlignLabelsStep():
|
|
29 |
tokenized_inputs["labels_mask"] = labels_mask
|
30 |
|
31 |
return tokenized_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def main():
|
33 |
|
34 |
PIPELINE_REGISTRY.register_pipeline("PT-BERT-Large-CRF-HAREM-Default-pipeline",
|
|
|
1 |
+
class TokenizeAndAlignLabelsStep():
|
2 |
+
|
3 |
+
# Adapted From : https://huggingface.co/docs/transformers/tasks/token_classification
|
4 |
+
def tokenize_and_align_labels(self, examples, tokenizer):
|
5 |
+
|
6 |
+
tokenized_inputs = tokenizer(examples, padding='max_length', truncation=True, max_length=128)
|
7 |
+
|
8 |
+
# Map tokens to their respective word.
|
9 |
+
word_ids = tokenized_inputs.word_ids()
|
10 |
+
import torch
|
11 |
+
from transformers import Pipeline
|
12 |
+
from transformers import AutoTokenizer
|
13 |
+
from transformers.pipelines import PIPELINE_REGISTRY
|
14 |
+
from transformers import pipeline
|
15 |
+
from transformers import AutoModelForTokenClassification
|
16 |
+
from huggingface_hub import Repository
|
17 |
+
import sys
|
18 |
+
import os
|
19 |
+
|
20 |
+
|
21 |
class TokenizeAndAlignLabelsStep():
|
22 |
|
23 |
# Adapted From : https://huggingface.co/docs/transformers/tasks/token_classification
|
|
|
49 |
tokenized_inputs["labels_mask"] = labels_mask
|
50 |
|
51 |
return tokenized_inputs
|
52 |
+
|
53 |
+
|
54 |
+
class BERT_CRF_Pipeline(Pipeline):
|
55 |
+
|
56 |
+
def _sanitize_parameters(self, **kwargs):
|
57 |
+
return {}, {}, {}
|
58 |
+
|
59 |
+
def preprocess(self, text):
|
60 |
+
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
62 |
+
"neuralmind/bert-base-portuguese-cased", do_lower_case=False)
|
63 |
+
|
64 |
+
TokenizeAndAlignLabelsStep().tokenize_and_align_labels(
|
65 |
+
examples=text, tokenizer=tokenizer)
|
66 |
+
|
67 |
+
return TokenizeAndAlignLabelsStep().tokenize_and_align_labels(examples=text, tokenizer=tokenizer)
|
68 |
+
|
69 |
+
def _forward(self, tokenizer_results):
|
70 |
+
|
71 |
+
input_ids = torch.tensor(
|
72 |
+
tokenizer_results['input_ids'], dtype=torch.long, device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")).unsqueeze(0)
|
73 |
+
|
74 |
+
token_type_ids = torch.tensor(
|
75 |
+
tokenizer_results['token_type_ids'], dtype=torch.long, device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")).unsqueeze(0)
|
76 |
+
|
77 |
+
attention_mask = torch.tensor(
|
78 |
+
tokenizer_results['attention_mask'], dtype=torch.bool, device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")).unsqueeze(0)
|
79 |
+
|
80 |
+
labels_mask = torch.tensor(
|
81 |
+
tokenizer_results['labels_mask'], dtype=torch.bool, device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")).unsqueeze(0)
|
82 |
+
|
83 |
+
# input_ids, token_type_ids, attention_mask, labels, labels_mask
|
84 |
+
outputs = self.model(input_ids=input_ids, token_type_ids=token_type_ids,
|
85 |
+
attention_mask=attention_mask, labels=None, labels_mask=labels_mask)
|
86 |
+
|
87 |
+
return {'outputs': outputs, 'tokens': tokenizer_results['tokens']}
|
88 |
+
|
89 |
+
def postprocess(self, outputs):
|
90 |
+
|
91 |
+
model_outputs = outputs['outputs']
|
92 |
+
tokens = outputs['tokens']
|
93 |
+
|
94 |
+
# From Ner_tags to Ner_labels
|
95 |
+
for i, label in enumerate(model_outputs[0]):
|
96 |
+
model_outputs[0][i] = self.model.config.id2label[label]
|
97 |
+
|
98 |
+
return model_outputs[0], tokens
|
99 |
+
|
100 |
+
|
101 |
def main():
|
102 |
|
103 |
PIPELINE_REGISTRY.register_pipeline("PT-BERT-Large-CRF-HAREM-Default-pipeline",
|