Edit model card

Whisper Base Korean

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_16_0 ko dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6687
  • Wer: 45.5026

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0149 133.0 1000 0.6687 45.5026
0.0048 266.0 2000 0.7148 47.7633
0.0024 399.0 3000 0.7484 48.4848
0.0014 533.0 4000 0.7774 49.0139
0.0009 666.0 5000 0.8037 48.8215
0.0006 799.0 6000 0.8269 49.4468
0.0004 933.0 7000 0.8482 49.3987
0.0003 1066.0 8000 0.8662 54.6417
0.0003 1199.0 9000 0.8800 49.9278
0.0003 1333.0 10000 0.8856 49.8316

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arun100/whisper-base-ko-1

Finetuned
(358)
this model

Dataset used to train arun100/whisper-base-ko-1

Evaluation results